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Introduction

The term “regular ving” will be understood in this paper in the sense
defined by Auslander-Buchsbaum [2]. It will mean namely a Noetherian
ring R, such that the quotient ring R, of R with respect to any prime ideal
p of R is a regular local ring. A regular intergral domain will be simply
called a regular domain. For example every Dedekind domain) is a one-
dimensional regular domain. As is well known, the concept of regular local
rings was introduced as a generalization of formal power-series rings with
finite numbers of variables over fields, whereas a regular ring may be con-
sidered as a generalization of a polynomial ring with a finite number of
variables over a field. In [2], as well as in Serre [10], an important charac-
terization of regular local rings is given. (But in [2] most proofs are left
out). The following theorem, given also in [2], [10] with homological
methods and referred to as Theorem A in the following, is important for us.

Tueorem A. If R is a regular local ring, then the quotient ring R, of R
with respect to any prime ideal D of R is also a vegular local ring.

According to this theorem, the definition of the regular ring can be
restated as follows: A Notherian ring R is called a regular ring if the quotient
ving Rn of R with respect to any maximal ideal m of R is a regular local ring.

In this paper, we shall start from our latter definition of the regular
ring, and shall prove properties of regular rings using only purely ideal-
theoretical methods. Among the results proved by homological methods, we
presuppose only Theorem A above mentioned. Most of the results previously
obtained, will be proved by simpler methods in the generalized form. We
shall use, in this paper, the notations and terminology of Northcott [8].
Moreover, “ideal” will always mean a proper ideal, “ring” a commutative
ring with unity e.

In §1, we shall prove that every regular ring can be expressed as a
direct sum of a finite number of regular domains.

1) Dedekind domain is an integral domain which satisfies Noether-Sono’s condi-
tion.



