Norm of units of quadratic fields.

By Yoshiomi Furuta

(Received Nov. 13, 1958)
Let P be the rational number field and $\Omega=P(\sqrt{d})$ a real quadratic field, where d is a positive square free integer, different from 2 . We denote by ε_{0} a fundamental unit of Ω; by ε an arbitrary unit of Ω; by N the absolute norm; and by small Roman letters a, b, \cdots, m, \cdots rational integers.

In this paper, we shall be concerned with the following problem:
" For what pair of integers d, m does there exist in Ω a ring unit ${ }^{1}$) \bmod. m with a negative norm: $N \varepsilon=-1$?"

Dirichlet gave some criteria on the question by means of power residue symbols. More recently it was investigated by A. Scholz, L. Rédei and others. In particular, Rédei [6], [7] etc. ${ }^{2}$, discussed it in detail by using the quadratic residue symbol and the fourth power residue symbol of Dirichlet, and finally Rédei [9] solved it completely as a problem related to the ideal class group of quadratic fields. On the other hand, Kuroda [5] and Furuta [1], [2] used the power residue symbol of Dirichlet and a generalized symbol to express the decomposition law of primes in some meta-abelian extensions, and also Tsunekawa [10] proved an interesting result concerning our problem. In the present paper, we shall give relationships between the norm of units of real quadratic fields and meta-abelian extensions, from which various results on our problem, in particular some of Rédei's results and Tsunekawa's theorem in a stronger from, can be deduced.

§ 1. Restricted power residue symbol.

Let Δ be an algebraic number field of finite degree, \mathfrak{p} a prime ideal of Δ prime to 2 and α a number of Δ, prime to \mathfrak{p}. Then for a non-negative rational integer n the restricted 2^{n}-th power residue symbol $[\alpha / \mathfrak{p}]_{n}$ is defined as follows ${ }^{3}$. For $n=0$ we set always $[\alpha / \mathfrak{p}]_{n}=1$. For $n \geqq 1[\alpha / \mathfrak{p}]_{n}$ is defined only when we have $[\alpha / \mathfrak{p}]_{n-1}=1$, and if this is really the case we set $[\alpha / \mathfrak{p}]_{n}$ $=(-1)^{x}$, where $\alpha^{\left(N p^{h}-1\right) / 2^{n}} \equiv(-1)^{x}$ (mod. \mathfrak{p}), h being the smallest natural number with $2^{n} \mid N \mathfrak{p}^{h}-1$. For an ideal \mathfrak{m} of Δ prime to both α and 2 with the

[^0]
[^0]: 1) Namely, a unit ε such that ε is contained in the ring class mod. m.
 2) See Rédei [9], in which the history and literatures of the subject is stated.
 3) See Furuta [2]. If Δ containes all the l-th roots of unity for a fixed rational prime l, we shall have analogous results to this $\S 1$ by using l instead of 2 .
