Journal of the Mathematical Society of Japan

Norm of units of quadratic fields.

By Yoshiomi FURUTA

(Received Nov. 13, 1958)

Let *P* be the rational number field and $\Omega = P(\sqrt{d})$ a real quadratic field, where *d* is a positive square free integer, different from 2. We denote by ε_0 a fundamental unit of Ω ; by ε an arbitrary unit of Ω ; by *N* the absolute norm; and by small Roman letters *a*, *b*,..., *m*,... rational integers.

In this paper, we shall be concerned with the following problem:

"For what pair of integers d, m does there exist in Ω a ring unit¹) ε mod. m with a negative norm: $N\varepsilon = -1$?"

Dirichlet gave some criteria on the question by means of power residue symbols. More recently it was investigated by A. Scholz, L. Rédei and others. In particular, Rédei [6], [7] etc.²), discussed it in detail by using the quadratic residue symbol and the fourth power residue symbol of Dirichlet, and finally Rédei [9] solved it completely as a problem related to the ideal class group of quadratic fields. On the other hand, Kuroda [5] and Furuta [1], [2] used the power residue symbol of Dirichlet and a generalized symbol to express the decomposition law of primes in some meta-abelian extensions, and also Tsunekawa [10] proved an interesting result concerning our problem. In the present paper, we shall give relationships between the norm of units of real quadratic fields and meta-abelian extensions, from which various results on our problem, in particular some of Rédei's results and Tsunekawa's theorem in a stronger from, can be deduced.

§1. Restricted power residue symbol.

Let Δ be an algebraic number field of finite degree, \mathfrak{p} a prime ideal of Δ prime to 2 and α a number of Δ , prime to \mathfrak{p} . Then for a non-negative rational integer *n* the restricted 2^n -th power residue symbol $[\alpha/\mathfrak{p}]_n$ is defined as follows³). For n = 0 we set always $[\alpha/\mathfrak{p}]_n = 1$. For $n \ge 1 [\alpha/\mathfrak{p}]_n$ is defined only when we have $[\alpha/\mathfrak{p}]_{n-1} = 1$, and if this is really the case we set $[\alpha/\mathfrak{p}]_n = (-1)^x$, where $\alpha^{(N\mathfrak{p}^n-1)/2^n} \equiv (-1)^x \pmod{\beta}$, *h* being the smallest natural number with $2^n | N\mathfrak{p}^n - 1$. For an ideal m of Δ prime to both α and 2 with the

¹⁾ Namely, a unit ε such that ε is contained in the ring class mod. *m*.

²⁾ See Rédei [9], in which the history and literatures of the subject is stated.

³⁾ See Furuta [2]. If Δ containes all the *l*-th roots of unity for a fixed rational

prime l, we shall have analogous results to this §1 by using l instead of 2.