Journal of the Mathematical Society of Japan

On a certain cup product.

By Seiya SASAO

(Received Oct. 4, 1958)

Introduction. Let K be a complex of a form $S^q \cup e^n \cup e^{n+q}$, i. e. a complex obtained from a q-sphere S^q by attaching an n-cell e^n and then an (n+q)-cell e^{n+q} where $n-2 \ge q \ge 2$. It is clear that the integral cohomology ring of K is as follows:

$$egin{aligned} &m{H}^0(m{K}) pprox m{H}^q(m{K}) pprox m{H}^{n}(m{K}) pprox m{H}^{n+q}(m{K}) pprox m{Z} \,, \ &m{H}^i(m{K}) = 0 \qquad i
eq 0, \, q, \, n, \, n+q \,, \end{aligned}$$

where Z denotes the ring of integers.

Let x, y, z denote the cohomology classes carried by e^n, S^q, e^{n+q} respectively. Then there is an integer m determined by $mz = x \cup y$. Let $\alpha \in \pi_{n-1}(S^q)$ denote the homotopy class of a map, $S^{n-1} \rightarrow S^q$, by which e^n is attached to S^q . I. M. James [5] described then K as a complex of type (m, α) and proved the following theorem (Theorem (1.8) l. c.).

J. Let $[\alpha, l_q] \in \pi_{n+q-2}(S^q)$ denote the Whitehead product of α and a generator $l_q \in \pi_q(S^q)$. Then there exists a complex of type (m, α) , if and only if $m[\alpha, l_q]$ is contained in the image of the homomorphism $\alpha_*: \pi_{n+q-2}(S^{n-1}) \to \pi_{n+q-2}(S^q)$ which is induced by α .

At the end of the introduction of [5], James remarks that it is possible to discuss this topic in term of the cohomology invariant of mappings which are defined in [10], although his discussion in [5] is based on different methods. We shall show in this paper that **J** can be indeed simply and mechanically proved by the cohomology invariant of mappings.

Let L be a complex of a form $S^q \cup e^n$ which is obtained by attaching e^n to S^q . Since the homotopy type of L depends only on the homotopy class of the attaching map, we denote by $L(\alpha)$ the complex L which has a map of the class $\alpha \in \pi_{n-1}(S^q)$ as the attaching map. Then all complexes of type (m, α) have $L(\alpha)$ as a subcomplex.

Now consider a relative functional cup product of a map $g:(\boldsymbol{E}^{n+q-1}, \dot{\boldsymbol{E}}^{n+q-1}) \rightarrow (\boldsymbol{L}(\alpha), S^q)$, where \boldsymbol{E}^{n+q-1} denotes an (n+q-1)-cell and $\dot{\boldsymbol{E}}^{n+q-1}$ its boundary. If we denote by \tilde{x} the generator of $\boldsymbol{H}^n(\boldsymbol{L}(\alpha), S^q)$ identified with the cohomology class of $\boldsymbol{H}^n(\boldsymbol{L}(\alpha))$ which is carried by e^n and denote by \tilde{y} the cohomology class of $\boldsymbol{H}^q(\boldsymbol{L}(\alpha))$ which is carried by S^q , then we have $\tilde{x} \cup \tilde{y} = 0$