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Existence of derivations in graded algebras.
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In the present paper we shall discuss on the existence of derivations in
the sense of C. Chevalley [1] in graded algebras. We shall give a new de-
finition of a homomorphism of graded algebras which is a generalization of
the usual one. Such a homomorphism will naturally lead us to a definition
of free graded algebras as a generalization of the concept of Z-graded free
algebras. The free graded algebras will play a fundamental r\^ole in our
study.

Section 1 shows the existence of derivations of the free graded algebras.
Section 2 deals with transferability between the derivation of a graded
algebra and that of its homomorphic image. In the last section 3 a criterion
for the existence of derivations in any graded algebras is obtained by using
new binary operations which are generalizations of the usual partial differ-
ential operators.

\S 1. Throughout this paper an algebra means an algebra with a unit
element 1, and a homomorphism of algebras means a ring homomorphism
which maps unit upon unit. We denote by $\Gamma,$ $\Delta,\cdots$ additive (commutative)

groups and by $(E, \Gamma)$ a $\Gamma$ -graded algebra over any fixed (commutative or
non-commutative) ring $A$ with a unit element.

Let $E=\Sigma_{r}\mathfrak{X}_{\Gamma}E_{\gamma}$ and $F=\Sigma_{c\in\Delta}^{ffl}F_{\delta}$ be decompositions of $(E, \Gamma)$ and $(F, \Delta)$

into homogeneous modules respectively. Let $\varphi_{R}$ be a homomorphism from $E$

onto (into) $F$ as algebras, and $\varphi_{G}$ a homomorphism from $\Gamma$ onto $\Delta$ . If $\varphi_{R}(E_{r})$

$\subseteqq F_{\varphi_{C}(7)}$ , then $\varphi=(\varphi_{R}, \varphi_{G})$ is called a homomorphism from $(E, \Gamma)$ onto (into)

$(F, \Delta)$ . For convenience, we write $\varphi(x)=\varphi_{R}(x)$ for $x\in E$, and $\varphi(\gamma)=\varphi_{G}(\gamma)$ for
$\gamma\in\Gamma$ ; the kernel of $\varphi$ means the kernel of $\varphi_{R}$ .

Let $(E, \Gamma)$ be a $\Gamma$-graded algebra over $A$ . Let $\Delta$ be a homomorphic image
or a factor group of $\Gamma$ . Then it is easy to see that $E$ is also a $\Delta$ -graded
algebra. An element in the homogeneous module $E_{\delta}$ of $E$ is called $\Delta$ -homo-
geneous of degree $\delta$ . A submodule $M$ of $E$ is said to be $\Delta$ -homogeneous if
$M=\Sigma_{\delta\in\Delta}^{\oplus}(M\cap E_{\delta})$ . If a submodule $ j\psi$ or an ideal $\mathfrak{A}$ of $E$ is generated by
$\Delta$ -homogeneous elements, then it is $\Delta$ -homogeneous by Theorem 1.3 in [1].

THEOREM 1. Let $(E, \Gamma)$ be a graded algebra over A. If $\Delta$ is a factor group
of $\Gamma$ , then there exists, for any $\Delta$ -homogeneous two-sided ideal QI of $E$, a homo-
morphism from $(E, \Gamma)$ onto $(E/\mathfrak{A}, \Delta)$ . Conversely, if $\varphi=(\varphi_{R}, \varphi_{G})$ is a homomor-


