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On Skolem’s theorem.
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In 1922, Th. Skolem proved the following famous theorem: If
there exists a model of any cardinal number for a system of axioms
(satisfying certain conditions), then there exists also a countable model
for the system. The aim of the present paper is to formulate and
prove a corresponding theorem from the finite stand point. Our
theorem reads as follows:

MAIN THEOREM. If $A,$ $B,$ $C,$ $D,$ $E$ in Godel [2] are consistent, then
$A,$ $B,$ $C,$ $D,$ $E$ and the following axioms are consistent.

$\forall x_{\exists y(y\in\omega\wedge f_{0}(y)=x)}$

$\forall x\forall y(x=y|-f_{0}(x)=f_{0}(y))$ ,

where $f_{0}$ is a function, which is not contained in axioms $A-E$, and
$\omega$ has the same meaning as in G\"odel [2].

Our proof depends on results of our former paper [6], [7] which,
$\ddagger n$ turn, is based on [8]. In [8], we have generalized $LK$ (Logistischer
klassischer Kalk\"ul) of Gentzen [4] to $GLC$ (Generalized logic calculus).
Especially we shall make use of the “ restriction theory ” (\S 7) of [8].
In [6] we have treated in detail $G^{1}LC$, a specialization of $GLC$, and
established the theorem: The fundamental conjecture holds for normal
proof-figure. (Both terms: “ fundamental conjecture “ and “ normal
proof-figure ” are defined in [6].) We shall now call $\tilde{L}K$, a logical
system obtained from $G^{1}LC$ by restricting it as follows:

In every $\forall$ left on $f$-variable of the form

$\frac{F(H),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

$F(\alpha)$ is not allowed to have any $\forall$ on $f$-variable. And the beginning
sequence of $\tilde{L}K$ is not allowed to have any logical symbol. We see
that every proof-figure of $\tilde{L}K$ is normal (in the sense defined In [6]).

Now we introduce two definitions in the system $LK$ of Gentzen.


