Journal of the Mathematical Society of Japan

Additive prime number theory in an algebraic number field.

By Tikao TATUZAWA

(Received Nov. 15, 1955)

Thanks to the remarkable work of Vinogradov [7], we know that every sufficiently large odd integer can be expressed as a sum of three primes. Less attention has been paid to the problem of representing numbers in an algebraic number field as a sum of primes. Rademacher [4] carried over the Hardy-Littlewood formula in the rational case to a real quadratic number field on a certain hypothesis concerning the distribution of the zeros of Hecke's $\zeta(s, \lambda)$ functions.

Let K be an algebraic number field of degree n with r_1 real conjugates $K^{(l)}$ $(l=1, 2, ..., r_1)$ and r_2 pairs of conjugate complex conjugates $K^{(m)}$, $K^{(m+r_2)}$ $(m=r_1+1, r_1+2, ..., r_1+r_2)$ so that $r_1+2r_2=n$. Let a, b be positive and μ, ν be in K. For convenience, we use the symbol

$$a \|\mu\| \leq b \|\nu\|$$

in the sense that

$$a |\mu^{(i)}| \leq b |\nu^{(i)}|$$
 $(i=1, 2, \dots, n).$

For example, $||\mu|| \leq b$ means $|\mu^{(i)}| \leq b$. Let a be any principal ideal in K. By the theory of units, there exist a positive constant c_0 depending only on K and at least one ν in K such that

(1)
$$\mathfrak{a} = (\nu) \text{ and } ||\nu|| \leq c_0 \sqrt[n]{N(\nu)}.$$

In what follows we fix this constant c_0 . We use a letter c to denote a positive constant depending only on K, not necessarily the same each time it occurs. The symbol

Y = O(X)