Additive prime number theory in an algebraic number field.

By Tikao Tatuzawa

(Received Nov. 15, 1955)

Thanks to the remarkable work of Vinogradov [7], we know that every sufficiently large odd integer can be expressed as a sum of three primes. Less attention has been paid to the problem of representing numbers in an algebraic number field as a sum of primes. Rademacher [4] carried over the Hardy-Littlewood formula in the rational case to a real quadratic number field on a certain hypothesis concerning the distribution of the zeros of Hecke's $\zeta(s, \lambda)$ funcfions.

Let K be an algebraic number field of degree n with r_{1} real conjugates $K^{(l)}\left(l=1,2, \cdots, r_{1}\right)$ and r_{2} pairs of conjugate complex conjugates $K^{(m)}, K^{\left(m+r_{2}\right)}\left(m=r_{1}+1, r_{1}+2, \cdots, r_{1}+r_{2}\right)$ so that $r_{1}+2 r_{2}=n$. Let a, b be positive and μ, ν be in K. For convenience, we use the symbol

$$
a\|\mu\| \leqq b\|\nu\|
$$

in the sense that

$$
a\left|\mu^{(i)}\right| \leqq b\left|\nu^{(i)}\right| \quad(i=1,2, \cdots, n)
$$

For example, $\|\mu\| \leqq b$ means $\left|\mu^{(i)}\right| \leqq b$. Let a be any principal ideal in K. By the theory of units, there exist a positive constant c_{0} depending only on K and at least one ν in K such that

$$
\begin{equation*}
\mathfrak{a}=(\nu) \quad \text { and } \quad\|\nu\| \leqq c_{0} \sqrt[n]{N(\nu)} . \tag{1}
\end{equation*}
$$

In what follows we fix this constant c_{0}. We use a letter c to denote a positive constant depending only on K, not necessarily the same each time it occurs. The symbol

$$
Y=O(X)
$$

