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Additive prime number theory in
an algebraic number field.
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Thanks to the remarkable work of Vinogradov [7], we know that
every sufficiently large odd integer can be expressed as a sum of
three primes. Less attention has been paid to the problem of re-
presenting numbers in an algebraic number field as a sum of primes.
Rademacher [4] carried over the Hardy-Littlewood formula in the
rational case to a real quadratic number field on a certain hypothesis
concerning the distribution of the zeros of Hecke’s $\zeta(s, \lambda)$ funcfions.

Let $K$ be an algebraic number field of degree $n$ with $r_{1}$ real
conjugates $K^{(l)}(l=1,2,\cdots, r_{1})$ and $r_{2}$ pairs of conjugate complex con-
jugates $K^{(m)},$ $K^{(m+r_{2})}(m=r_{1}+1, r_{1}+2,\cdots, r_{1}+r_{2})$ so that $r_{1}+2r_{2}=n$ . Let
$a,$

$b$ be positive and $\mu,$ $\nu$ be in $K$. For convenience, we use the
symbol

$ a||\mu||\leqq b||\nu$ Il
in the sense that

$a|\mu^{(t)}|\leqq b|\nu^{(i)}|$ $(i=1,2,\ldots, n)$ .
For example, $||\mu||\leqq b$ means $|\mu^{(i)}|\leqq b$ . Let $\mathfrak{a}$ be any principal ideal
in $K$. By the theory of units, there exist a positive constant $c_{0}$

depending only on $K$ and at least one $\nu$ in $K$ such that

(1) $\mathfrak{a}=(\nu)$ and $||\nu||\leqq c_{0}\sqrt[n]{N(\nu)}$ .
In what follows we fix this constant $c_{0}$ . We use a letter $c$ to denote
a positive constant depending only on $K$, not necessarily the same
each time it occurs. The symbol

$Y=O(X)$


