# On geometry of numbers. 

By L. A. Santaló

(Received April 1, 1953)

1. Introduction. In a recent paper Tsuji [3] has given some theorems which may be considered as a generalization to Fuchsian groups of the classical theorems of Blichfeldt [1] and Minkowski in the geometry of numbers. In both cases, however, the generalization is restricted to circular domains.

The object of this paper is to carry this generalization further. First, by considering more general groups than the Fuchsian groups; second, by considering a kind of domains more general than the circular domains.
2. A preliminary integral formula. Let $S$ be a space of points in which operates a transitive group of transformations G. For a point $P \in S$ and an element $s \in G$ we denote with $s P$ the transform of $P$ by $s$. The elements $s$ of $G$ with $s P_{0}=P_{0}$ for a given point $P_{0}$ of $S$ form a subgroup $G_{0}$ of $G$. Let $G_{1}$ be a simply-transitive subgroup of $G$. Then we have obviously $G_{1} G_{0}=G, G_{1} \frown G_{0}=\{e\}$ (unit group), and we can identify $G_{1}$ with the homogeneous space $G / G_{0}$ or with the space $S$ by assigning $x \in G_{1}$ to $x G_{0} \in G / G_{0}$ or to $x P_{0} \in S . \quad G$ may be then considered as operating on $G_{1}$, as well as on $S$, in the following manner. Let $s, t \in G, x \in G_{1}$, then $s x t$, properly an element of $G$, is identified with the element of $G_{1}$ corresponding to $\operatorname{sxt} G_{0}$ in $G / G_{0}$. We assume now $G_{1}$ to be locally compact and provide $G / G_{0}$ resp. $S$ with the same topology as that of $G_{1}$. We assume further that $G_{1}$ is unimodular, i.e. that the left invariant measure of $G_{1}$ is also right invariant; and that this measure is also invariant with respect to $G$, so that we have $m(H)=m(s H t)$ for a point-set $H$ in $G_{1}$ and any $s, t \in G$. This may be symbolically written as follows $([4,34])$ :
(2.1) $d x=d x^{-1}, \quad d x=d(s x t)$ for any $s, t \in G$,

$$
\begin{equation*}
m(H)=\int_{G_{1}} \varphi(x) d x \tag{2.2}
\end{equation*}
$$

where $d x$ denotes the element of volume of $G_{1}$ and $\varphi(x)$ the charac-

