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Inner endomorphisms of an associative algebra.
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The inner automorphisms of an algebra are operations of funda-
mental importance defined on the algebra, where the adjective “ inner”
implies that these automorphisms are defined by some elements of the
algebra by means of a certain canonical procedure which enables one
to compute these automorphisms. Not only automorphisms, but homo-
morphisms of the algebra into itself $i$ . $e$ . endomorphisms of the algebra
play some r\^oles in the structure theory of the algebra. In this con-
nection, an attempt will be made in the following lines to generalize
the notion of the inner automorphisms so as to include some endo-
morphisms which may be called inner in the above sense.

\S 1. Throughout this paper, $A$ will denote an associative algebra
with an identity and of a finite dimension, say $n$ , over a ground field
$K$. Set $K_{0}=K(X_{1},\cdots,X_{n})$ and $K_{1}=K(X_{1},\cdots\cdots,X_{n}, Y_{1},\cdots, Y_{n})$ , where $ X_{1},\cdots$ ,
$X_{n},$ $Y_{1},\cdots,$ $Y_{n}$ are independent variables over $K$ ; an element $f(X_{1},\cdots,X_{n})$

of $K_{0}$ , or an element $g(X_{1},\cdots,X_{n}, Y_{1},\cdots, Y_{n})$ of $K_{1}$ will be written in the
simplified form $f(X)$ or $g(X, Y)$ , respectively. Construct an auxiliary
algebra $A_{1}$ by extending the ground field $K$ of $A$ to $K_{1}$ . A $K\cdot basis$

$(u_{i})$ of $A$ serves also as a $K_{1}$-basis of $A_{I}$. Let the multiplication table
of $(u_{i})$ be $u_{i}u_{j}=\sum\gamma_{ijk}u_{k},$ $\gamma_{ijk}eK$. If $a=\sum f_{i}u_{i},$ $f_{i}\in K_{1}$ , is an element
of $A_{1}$ , we shall denote by $M(a, u)$ the n-rowed matrix $(\sum_{i}f_{i}\gamma_{ijk})_{jk}$ .
Then $a$ is regular if and only if $\det M(a,u)\neq 0$ . Since $\det M(1, u)$

does not vanish certainly, we have also $\det M(S, u)\neq 0$ for the general
element $S=\sum X_{i}u_{i}$ , which has therefore an inverse element. Put
(1) $(\sum X_{i}u_{i})(\sum Y_{i}u_{i})(\sum X_{i}u_{i})^{-1}=\sum Y_{i}^{\prime}u_{i}$ ,

where $Y_{i}^{f}=Y_{i}^{\prime}(X, Y)$ is linear in $Y_{i}$ , and we can write

(2) $Y_{i}^{\prime}=\sum R_{ij}(X)Y_{j}$ with $R_{ij}(X)\in K_{0}$ .


