Inner endomorphisms of an associative algebra.

By Akira Hattori

(Received June 4, 1953)
The inner automorphisms of an algebra are operations of fundamental importance defined on the algebra, where the adjective " inner" implies that these automorphisms are defined by some elements of the algebra by means of a certain canonical procedure which enables one to compute these automorphisms. Not only automorphisms, but homomorphisms of the algebra into itself i. e. endomorphisms of the algebra play some rôles in the structure theory of the algebra. In this connection, an attempt will be made in the following lines to generalize the notion of the inner automorphisms so as to include some endomorphisms which may be called inner in the above sense.
§ 1. Throughout this paper, A will denote an associative algebra with an identity and of a finite dimension, say n, over a ground field K. Set $K_{0}=K\left(X_{1}, \cdots, X_{n}\right)$ and $K_{1}=K\left(X_{1}, \cdots \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right)$, where X_{1}, \cdots, $X_{n}, Y_{1}, \cdots, Y_{n}$ are independent variables over K; an element $f\left(X_{1}, \cdots, X_{n}\right)$ of K_{0}, or an element $g\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right)$ of K_{1} will be written in the simplified form $f(X)$ or $g(X, Y)$, respectively. Construct an auxiliary algebra A_{1} by extending the ground field K of A to K_{1}. A K-basis (u_{i}) of A serves also as a K_{1}-basis of A_{1}. Let the multiplication table of (u_{i}) be $u_{i} u_{j}=\sum \gamma_{i j k} u_{k}, \gamma_{i j k} \in K$. If $a=\sum f_{i} u_{i}, f_{i} \in K_{1}$, is an element of A_{1}, we shall denote by $M(a, u)$ the n-rowed matrix $\left(\sum_{i} f_{i} \gamma_{i j k}\right)_{j k}$. Then a is regular if and only if $\operatorname{det} M(a, u) \neq 0$. Since $\operatorname{det} M(1, u)$ does not vanish certainly, we have also $\operatorname{det} M(S, u) \neq 0$ for the general element $S=\sum X_{i} u_{i}$, which has therefore an inverse element. Put

$$
\begin{equation*}
\left(\sum X_{i} u_{i}\right)\left(\sum Y_{i} u_{i}\right)\left(\sum X_{i} u_{i}\right)^{-1}=\sum Y_{i}^{\prime} u_{i}, \tag{1}
\end{equation*}
$$

where $Y_{i}^{\prime}=Y_{i}^{\prime}(X, Y)$ is linear in Y_{i}, and we can write

$$
\begin{equation*}
Y_{i}^{\prime}=\sum R_{i j}(X) Y_{j} \quad \text { with } \quad R_{i j}(X) \in K_{0} . \tag{2}
\end{equation*}
$$

