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On the capacity of general Cantor sets.
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1. General linear Cantor sets.

1. Let 4 be an interval on the x-axis. We take % (>>2) disjoint
intervals 4;, (=1, 2,---, k) in 4 and £ disjoint intervals 4;:.(0,=1,2,--- k)
in 4;, and proceed similarly, then after #» steps, we obtain % intervals
A,‘l...,'n (il,"', 1,=1, 2,---, k), such that

A,’l...,'” - Ail"'in—l . (i,= L,2,--,k). (1)
We put
E=Ii (l'zﬁ'kd- ; ) (2)
Coae\iy, ) v

”

In §1 and §2, we denote the length of an interval I by | I'| and the
logarithmic capacity of a set M by y(M). We assume that there
exists constants ¢>>0, 6>>0, such that for n=1,2,--

| diyeiyy  vIZ @ dipi | (v=1,2,---, k) (31

and
the mutual distance of dipi o pand diii v (u,0=1,2,--- kb, u=Fp)

is =>b I"il“'in—l . (32)

n-1

Then we call E a general linear Cantor set.
THEOREM 1. Let E be a general linear Cantor set. Then

1
m(E)=0, v(E)Y=a*T1b|4]|>0,
wherve m(E) is the linear measure and v(E) the logarithmic capacity
of E.
At every point of E, the upper capacity density of E is positive, so
that every point of E is a regular point for Dirichlet problem.



