On the capacity of general Cantor sets.

By Masatsugu Tsuji

(Received May 28, 1953)

1. General linear Cantor sets.

1. Let Δ be an interval on the x-axis. We take $k \geq 2$ disjoint intervals $\Delta_{i_1}(i_1=1,2,\cdots,k)$ in Δ and k disjoint intervals $\Delta_{i_1i_2}(i_2=1,2,\cdots,k)$ in Δ_{i_1} and proceed similarly, then after n steps, we obtain k^n intervals $\Delta_{i_1\cdots i_n}(i_1,\cdots,i_n=1,2,\cdots,k)$, such that

$$\Delta_{i_1\cdots i_n} \subset \Delta_{i_1\cdots i_{n-1}}. \quad (i_n=1,2,\cdots,k). \tag{1}$$

We put

$$E = \prod_{n=1}^{\infty} \left(\sum_{i_1, \dots, i_n}^{1, 2, \dots, k} \Delta_{i_1 \dots i_n} \right). \tag{2}$$

In § 1 and § 2, we denote the length of an interval I by |I| and the logarithmic capacity of a set M by $\gamma(M)$. We assume that there exists constants a>0, b>0, such that for $n=1,2,\cdots$

$$|\Delta_{i_1\cdots i_{n-1}}\nu| \ge a |\Delta_{i_1\cdots i_{n-1}}| \quad (\nu=1,2,\cdots,k)$$
 (3₁)

and

the mutual distance of $\Delta_{i_1\cdots i_{n-1}\mu}$ and $\Delta_{i_1\cdots i_1\cdots i_{n-1}\nu}$ $(\mu,\nu=1,2,\cdots,k,\mu \neq \nu)$

is
$$\geq b |A_{i_1\cdots i_{n-1}}|$$
. (32)

Then we call E a general linear Cantor set.

THEOREM 1. Let E be a general linear Cantor set. Then

$$m(E)=0$$
, $\gamma(E) \ge a^{\frac{1}{k-1}} b |\Delta| > 0$,

where m(E) is the linear measure and $\gamma(E)$ the logarithmic capacity of E.

At every point of E, the upper capacity density of E is positive, so that every point of E is a regular point for Dirichlet problem.