Journal of the Mathematical Society of Japan Vol. 3, No. 1, May, 1951.

Theorems of Bertini on Linear Systems

Yasuo Ακιζυκι

As the fundamental theorems of the classical algebraic geometry we have these of Bertini:

- I. The general section U_{r-1} of an algebraic variety U_r by a linear system without fixed components is irreducible, provided that the linear system is not composed of an algebraic pencil.
- II. The general section U_{r-1} of U_r by a linear system can not have any singular points outside the singlar points of U_r and outside the base points of the linear system.

The first proposition was proved purely algebraically first by Zariski,¹⁾ when the basic field k of U_r is of characteristic p=0. Matsusaka²⁾ remarked that this holds even when p>0 under an additional condition.

Zariski³⁾ has also given an adequate formulation to the second proposition for the case p>0, as it cannot be maintained in the above formulation in this case.

In this paper we shall study how the above formulation will not be maintained when p>0, and will give a sufficient condition that it should be maintained. Thereby we shall give also a new proof the first proposition. Further we shall add a new elementary proof of the second proposition in the classical case.⁴

1. Let U_r be an *r*-dimensional irreducible algebraic variety immersed in an *N*-dimensional projective space S^N and defined over a field k of characteristic $p \ge 0$. We denote by $(\xi_0, \xi_1, \dots, \xi_N)$ the homogeneous coordinates of the generic point of U/k. And we assume that the linear system on U

$$\lambda_0 f_0(\boldsymbol{\xi}) + \lambda_1 f_1(\boldsymbol{\xi}) + \dots + \lambda_m f_m(\boldsymbol{\xi}) \tag{1}$$

has no fixed components.

¹⁾ See Zariski [1].

²⁾ See Matsusaka [5].

³⁾ See Zariski [2].

⁴⁾ We shall use the same terminalogies in Weil's book [3].