Riemann Spaces of Class Two and their Algebraic Characterization.

Part I.

Makoto Matsumoto.

(Received June 15, 1949)

We shall investigate in this paper a necessary and sufficient condition that an *n*-dimensional Riemann space $R_n(n \ge 6)$ be of class two. Let the line element of R_n be a positive definite quadratic form

$$ds^2 = g_{ij}dx i dx^j; (i,j,...=1,2,...,n);$$

where g's are analytic functions of $x^1,...,x^n$.

Consider, in an (n+2)-dimensional euclidean space E_{n+2} , an *n*-dimensional variety S_n defined by

$$y^{\alpha} = \varphi^{\alpha}(x^{1},...x^{n})$$
 $(\alpha = 1,..., n+2)$;

where y's are current coordinates of the point of S_n referred to a rectangular cartesian coordinate system in E_{n+2} and φ 's are analytic functions of x^1, \dots, x^n . The line element along a curve on S_n is given by

$$ds^2 = \sum_a (dy^a)^2 = \sum_a B_i^a B_j^a dx^i dx^j = g_{ij} dx^i dx^j;$$

where

$$B_i^a = \frac{\partial y^a}{\partial x^i}.$$

Let $B_F^a(P=I,II)$ be the components of two mutually orthogonal unit vectors normal to S_n . The variation of $B_{\lambda}^a(\alpha=1,...,n+2; \lambda=1,...n, I, II)$ along the curve can be written as

$$dB^{a}_{\lambda} = H^{\sigma}_{\lambda i} B^{a}_{\sigma} dx^{i} \quad (i=1,...,n; \sigma,\lambda=1,...,n,I,II; \alpha=1,...,n+2).$$

As a condition of integrability of these equations we get immediately that H^{i}_{jk} (i,j,k=1,...,n) are Christoffel's symbols and H^{P}_{ij} (P=I,II;i,j=1,...,n) are symmetric in i and j; and $H^{P}_{Qi}(P,Q=I,II;i=1,...,n)$ are skew-symmetric in P and Q; those $H^{o}_{\lambda i}$ satisfy the Gauss equation

(1)
$$R_{ijkl} = H_{ik}^{P} H_{jl}^{P} - H_{il}^{P} H_{jk}^{P},$$