On Integral Invariants and Betti Numbers of Symmetric Riemannian Manifolds, II.

Hideyuki Iwamoto
(Received Oct. 2, 1947)

Chapter III.

Formation of invariant differentials and the Schubert varieties.

I.

1. We have already seen that the manifold $S(n)$ can be considered as the set of all null-systems $x \rightarrow y=S x$ such that the skew matrix S is at the same time orthogonal. Let us show that this manifold can also be considered as the set of all isotropic m-planes in P_{n}.

In order that a subspace $\mathfrak{M} \in P$ be isotropic, it is neccesary and sufficient that $(x, y)=0$ for all $x, y \in \mathfrak{M}$. For any \mathfrak{M} there exists the conjugate $\overline{\mathfrak{M}}$ of \mathfrak{M}. $\overline{\mathfrak{M}}$ is namely the set of vectors \bar{x}, where $x \in \mathfrak{M}$. The correspondence $\mathfrak{M} \rightarrow \overline{\mathfrak{M}}$ is invariant under the group $O(n)$. In \mathfrak{M} we take m vectors $x_{1}, \ldots \ldots, x_{m}$ such that $\left(x_{i} \bar{x}_{j}\right)=\delta_{i j}$. The vectors $e_{1}, \ldots \ldots, e_{n}$ with

$$
\begin{equation*}
e_{i}=\left(x_{i}+\bar{x}_{i}\right) / \sqrt{2}, e_{m+i}=\left(x_{i}-\bar{x}_{i}\right) / \sqrt{-2} \tag{1}
\end{equation*}
$$

constitute a real coordinate system such that ($e_{i} c_{j}$) $=\boldsymbol{\delta}$ (ij). This shows at once that the manifold $\tilde{\Sigma}(n)$ is tronsformed transitively by the group $O L(n$.$) Now the manifold \tilde{\Sigma}(n)$ consists of two different continuous families, each being transformed transitively by the group $O(n)$. We denote one of them by $\Sigma(n)$. Then there exists a one to one correspondence between the elements of the manifolds $S(n)$ and $\Sigma(n)$ invariant with respect to the group $O(n)$. In fact, let S be an element of $S(n)$. We consider a set \mathfrak{M} of all complex vectors of the form

$$
\mathfrak{x}=x+\sqrt{-1} S_{x} \quad x \in R_{n} .
$$

The vector x is isotropic. To show that \mathfrak{M} is isotropic m-dimensional we take a special coordinate system such that $S=I . \mathfrak{M}$ is then the set of all vectors of the form $\left(z_{1}, \ldots \ldots, z_{m}, \sqrt{-1} z_{1}, \ldots \ldots, \sqrt{-1} z_{m}\right)$, where $z_{i} \in K$.

[^0]
[^0]: The group of desplacements of $S(n)$ is $S \rightarrow T S^{*} T, T \in O(n)$. We denote by $\Sigma(n)$ the set of all isotropic m-planes of P_{n}, where $n=2 m$.

