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A boundary value problem of some special ordinary
differential equations of the second order.
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\S 1. Statement of the problem.

1. Among various results concerning the behaviour of geodesics in
the large, there are many theorems’ which can be stated without the con-
cept of length. They seem to be only properties in the large of integral
curves of a system of differential equations of the second order. Hence,

some of them may be generalized to the geometry of paths in $the^{\backslash }$ large.
Now, the first-problem in the theory of‘geodesics in the large is that

“ Given any two points on a surface, can they always be bound by a

geodesic $p$
” From the point of view stated above, there then arises the.

following problem: Given any two points in a plane, can they always be

bound by a path $p$ A path is, by definition, an integral curve of a system

of ordinary differential equations of the second order of the following type

$x=A_{1}\dot{x}^{2}+2B_{1}xy+C_{1}\dot{y}^{2}$ , 1

1 $(1\rangle$

$\ddot{y}yJ^{\prime}\underline{\rangle}$

.
where dots denote derivatives with respect to a parameter $t$, and $A_{1},$ $B_{1},$

$.$ .
..., $C\underline{\circ}$ denote continuous functions of $\chi$ and $y$ . Putting $x=x^{1},$ $\parallel=x^{2}$ , the

set of equations (1) are usually written as

$x^{i}+\Gamma_{j^{i}k}x^{j}x^{k}=0$ , $(i, j, k=1,2)$ (2)

$\Gamma_{jk}^{i}$ being $called$
’

parameters of an affine connexion.
The answer of the problem is in general negative. But, it is desirable

to. know in what manner it becomes impossible, in other words, the be-

haviour of integral curves.
In this paper we shall confine $0\iota\rceil rselves$ to the simplest cas6 where $A_{1}$ ,

$B_{1}$ , ......, $C_{2}$ are all real constants. Our result may be stated as follows:
Theorem. Let there be given a system of $d\iota ffer\ell nt\iota^{\prime}al$ equations of the

form (1) $ wit/\iota$ real $consta_{-}ntCo\mathscr{J}fficicntsA_{1},$ $B_{I},$
$\ldots\ldots,$

$C_{2}$ . $T1\iota en$ tizey. can be

cJassified into two types. For one of $t/\iota cm$ any two points in plane can be


