J. Math. Soc. Japan Vol. 42, No. 3, 1990

The exterior non-stationary problem for the Navier-Stokes equations in regions with moving boundaries

By Rodolfo SALVI

(Received Feb. 6, 1989) (Revised July 31, 1989)

1. Introduction.

We consider the motion of a viscous incompressible fluid in an exterior domain with moving boundaries, in other words we have to deal not with a space-time cylinder but with a noncylindrical domain in $R^3 \times [0, T]$. To be more precise, we consider a domain

$$\mathcal{Q}_T = \bigcup_{0 \le t \le T} \mathcal{Q}(t) \times \{t\}$$

where each $\Omega(t)$ is the exterior of a bounded connected domain $\Omega^{c}(t)$ in \mathbb{R}^{3} , and T>0 is a finite number.

The exterior problem for the Navier-Stokes equations consists of finding in the region Ω_T exterior to a closed bounded surface, the velocity u and the pressure p which together solve the system (1.1) given below, and are such that the velocity assumes a given value on the surface, for $|x| \rightarrow \infty$, and in t=0.

The motion of the fluid in Q_T is governed by the following equations

(1.1)
$$\partial_t u - \mu \Delta u + u \cdot \nabla u = f - \nabla p$$
, $\nabla \cdot u = 0$ in \mathcal{Q}_T

where $\partial_t = \partial/\partial t$, $u = u(t) = (u_1(x, t), u_2(x, t), u_3(x, t))$ is the velocity, p = p(t) = p(x, t)the pressure, $f = f(t) = (f_1(x, t), f_2(x, t), f_3(x, t))$ the external force, and μ the viscosity. We take the motion of the fluid at t=0 to be known, hence $u(x, 0) = u_0$ is a prescribed vector field in $\Omega(0)$. Let

$$\Gamma_T = \bigcup_{0 \le t \le T} \Gamma(t) \times \{t\}$$

where $\Gamma(t)$ is the boundary of $\Omega^{c}(t)$. Throughout the paper we suppose that Γ_{T} is smooth enough and $\Omega(t)$ does not change its topological type as t increases over [0, T]. The classical formulation of the problem is the velocity u and the pressure p to satisfy (1.1) and the initial boundary conditions

This paper is partially supported by M.P.I. 60%, and by GNAFA of C.N.R.