Compact minimal submanifolds of a sphere with positive Ricci curvature

By Norio EJIRI

(Received June 7, 1977)
(Revised Oct. 20, 1977)

1. Introduction.

Let M be an n-dimensional simply connected compact orientable submanifold minimally immersed in an ($n+p$)-dimensional sphere of constant curvature 1 . The pinching problem with respect to the scalar curvature of $M[6][1]$ and the sectional curvature of M [4] [8] have been studied. In this note, we shall prove a pinching theorem with respect to the Ricci curvature of M. Some examples are:

Example 1. In general, let $S^{q}(r)$ denote a q-dimensional sphere in R^{q+1} with radius r. Let m and n be positive integers such that $m<n$ and let $M_{m, n-m}$ $=S^{m}\left(\sqrt{\frac{m}{n}}\right) \times S^{n-m}\left(\sqrt{\frac{n-m}{n}}\right)$. We imbed $M_{m, n-m}$ into $S^{n+1}=S^{n+1}(1)$ as follows. Let (u, v) be a point of $M_{m, n-m}$, where u (resp. v) is a vector in R^{m+1} (resp. R^{n-m+1}) of length $\sqrt{\frac{m}{n}}$ (resp. $\left.\sqrt{\frac{n-m}{n}}\right)$. We can consider (u, v) as a unit vector in $R^{n+2}=R^{m+1} \times R^{n-m+1}$. It is easily shown that $M_{m, n-m}$ is a minimal submanifold of S^{n+1}. Furthermore from the fact the first eigenvalue of the Laplacian of $M_{m, n-m}$ is n and the dimension of the eigenspace is $n+2$, we can prove the following.

Let χ be a minimal immersion of $M_{m, n-m}$ into S^{n+p} such that the immersion is full, i. e. $\chi\left(M_{m, n-m}\right)$ is not contained in a linear subspace of R^{n+p+1}. Then $p=1$ and the immersion is rigid. The Ricci curvature of $M_{m, n-m}$ varies between $\frac{n(m-1)}{m}$ and $\frac{n(n-m-1)}{n-m}$.

Example 2. We can define a minimal immersion of an n-dimensional complex projective space $P_{2 n /(n+1)}^{n}$ with holomorphic sectional curvature $\frac{2 n}{n+1}$ into $S^{n(n+2)-1}$ such that the usual coordinate functions of $R^{n(n+2)}$ are all independent hermitian harmonic functions of degree 1 on $P_{2 n /(n+1)}^{n}$.

