Tôhoku Math. Journ. 27(1975), 445-451.

CONFORMALLY FLAT RIEMANNIAN MANIFOLDS ADMITTING A TRANSITIVE GROUP OF ISOMETRIES II

HITOSHI TAKAGI

(Received July 31, 1974)

1. Introduction. Let M be an n-dimensional conformally flat Riemannian manifold which admits a transitive group of isometries. In [1], the author proved that M is isometric to one of the homogeneous Riemannian manifolds of following types:

(I) $S^n(K)/\Gamma$, E^n/Γ , $H^n(-K)$,

(II) $(S^r(K)/\Gamma) imes H^{n-r}(-K), \quad 2 \leq r \leq n-2,$

(III) $(E^{1}/\Gamma) imes H^{n-1}(-K)$,

(IV) $(S^{n-1}(K) imes E^1)/arGamma$,

where $S^{m}(K)$, E^{m} and $H^{m}(-K)$ denote a Euclidean *m*-sphere of radius $K^{-1/2}$, a Euclidean *m*-space and a hyperbolic *m*-space of curvature -K respectively. N/Γ denotes a quotient space, where Γ is a group of isometries of N acting freely and properly discontinuously. And \times denotes a Riemannian product.

J. A. Wolf (see [2]) classified the homogeneous Riemannian manifolds of the forms $S^{n}(K)/\Gamma$ and E^{n}/Γ . Thus, the problem left to us is to determine the groups Γ appearing in (IV). In [1], the author proved a few theorems about the structure of Γ . Making use of the theorem, we shall classify the manifolds of type IV completely.

2. Structure of Γ . We consider $S^{n-1}(K)$ as the set of vectors of norm $K^{-1/2}$ in a Euclidean vector space \mathbb{R}^n . Then, the group of all isometries of $S^{n-1}(K)$ is the orthogonal group O(n). Let \mathbb{Q} and \mathbb{Q}' denote the algebra of real quaternions and the multicative group of unit quaternions respectively. $\mathbb{Q}' = \{a = a_1 + a_2i + a_3j + a_4k; \sum_{s=1}^4 a_s^2 = 1, a_s \in \mathbb{R}\}$ has an SO(4l)-representation ρ defined by

$$ho: a
ightarrow \left(egin{array}{c} A \ dots \ dots \ A \end{array}
ight)$$
, where $A = egin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \ a_2 & a_1 & -a_4 & a_3 \ a_3 & a_4 & a_1 & -a_2 \ a_4 & -a_3 & a_2 & a_1 \end{pmatrix}$.