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Introduction. W.Randels” has proved the following Theorem.
TueoREM A. There is a function f(t)e L2 such that

10, g: e ()| du % 0(2), @x(t) = f o+ ) + fx — #) — 2f (),

20  the series
(0.1) Zz (@n cos nx + bn sin 1) [v/ log n
=~

converges, where

(0.2) f(£) ~ %’— + Zl(ancos nt + ba sin ne).
=

R.E. A.C. Paley” has proved
TueoreM B. There is an integrable function f(¢) such that

1°. 5; Px (l{) du * o(l‘))
2. the Fonricr series (0.2) of f(2) converges at t = x.
As a generalization of Theorem A we prove that

TuroreM 1. There is a bounded function f(t) such that

10, S: | @ (4) | du =+ 0,
2. the Fourier series (0.2) of f(2) converges at t = x.

We prove also the following theorem containing Theorem A and B.
That is,
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