NOTES ON FOURIER ANALYSIS (XXVI): SOME NEGATIVE EXAMPLES IN THE THEOREY OF FOURIER SERIES*

By

Shin-ichi Izumi

Introduction. W. Randels¹⁾ has proved the following Theorem. THEOREM A. There is a function $f(t) \in L^2$ such that

1^a.
$$\int_{0}^{t} |\varphi_{x}(u)| du = o(t), \ \varphi_{x}(t) = f(x+t) + f(x-t) - 2f(x),$$

2^a. the series

(0.1)
$$\sum_{n=2}^{\infty} (a_n \cos nx + b_n \sin nx) / \sqrt{\log n}$$

converges, where

(0.2)
$$f(t) \sim -\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt).$$

R. E. A. C. Paley³ has proved

THEOREM B. There is an integrable function f(t) such that

1°.
$$\int_0^t \varphi_x(u) \, du \neq o(t),$$

2°. the Fourier series (0.2) of $f(t)$ converges at $t = \infty$

As a generalization of Theorem A we prove that

THEOREM 1. There is a bounded function f(t) such that

1°. $\int_{0}^{t} | \varphi_{x}(u) | du = 0,$ 2°. the Fourier series (0.2) of f(t) converges at t = x.

We prove also the following theorem containing Theorem A and B. That is,

^{*)} Received Oct. 1, 1949.

¹⁾ W. Randels, Bull. Am. Math. Soc., 46 (1940).

²⁾ R. E. A. C. Paley, Proc. Cambridge Phil. Soc., 26 (1930).