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1.

1. Let E be a bounded Borel set of points on g-plane. We distribute a
positive mass du (4) of total mass 1 on E and let

@)= log— L du(a), (u(B) = 1),

E Iz — al

then 4 (z) is harmonic outside of E. Let I/, be the upper limit of () for
[gl < and IV =inf /., then C(E)=¢-" is called the logarithmic capacity
of E. Hence if C (]%) >0, i.e. I/ < w, then we can distribute a positive mass
du on E, such that IV, < «.

Evans® proved the following theorem, which we use in the proof of
Theorem 5,

Lewma 1. (Evans.) Let E be a bounded closed set of logarithmic capacity gero
on g-plane, then we can distribute a positive mass of total mass 1 on E, such that
#(g) tends to+ o, when g tends to any point of E.

Beurling” proved the following important theorems :

TueoreM 1. (BrURLING.) Let w=f(g) be regular in 13| <1 and the area A
on w-plane, which is described by w= f) (gl <1) be finite, i. e.

A= ] 17 e rado < =,
[z} <1

then the set E of points ¢* on |g| =1, such that

*) Received October 5, 1949.
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