NOTES ON FOURIER ANALYSIS (XL): ON THE ABSOLUTE SUMMABILITY OF THE FOURIER SERIES

NOBORU MATSUYAMA

(Received July 3, 1950)

1. Let $\{\lambda_n\}$ be a positive and increasing sequence, and let

(1.1)
$$R(\omega) = \omega^{-1} \sum_{\lambda_n < \omega} (\omega - \lambda_n) a_n$$

be the $(R, \lambda_n, 1)$ -mean of the series $\sum a_n$. If $R(\omega)$ is of bounded variation in the interval (λ_1, ∞) , that is

$$\int_{\lambda_1}^{\infty} |dR(\omega)| = \int_{\lambda_1}^{\infty} \omega^{-2} \Big| \sum_{\lambda_n < \omega} \lambda_n a_n \Big| d\omega < \infty,$$

then $\sum a_n$ is said to be absolutely $(R, \lambda_n, 1)$ -summable, or simply $|R, \lambda_n, 1|$ -summable.

Let f(t) be an L-integrable function in the interval $(0, 2\pi)$, and its Fourier series be

$$f(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt).$$

For the absolute summability of the Fourier series, following theorems are known:

THEOREM A. [1] If for any $\beta > 0$

 $\mathcal{P}(t)(\log t^{-1})^{\beta} = O(1) \quad (t \to 0),$

then the Fourier serier of f(t) is summable $|R, \log n, 1|$ at t = x, where

$$P(t) = \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \}.$$

THEOREM B.[2] If $\mathcal{P}(t)$ is of bounded variation in $(0, \pi)$, then the Fourier series of f(t) is summable $|R, n, \varepsilon|$ at t = x, where $\varepsilon > 0$.

THEOREM C. [3] If $\mathcal{P}(t) \log 1/t$ is of bounded variation in $(0, \pi)$ then the Fourier series of f(t) is summable $|R, \exp(n^{\alpha}), 1|$ at t = x, where $0 < \alpha$ < 1.

In this paper we consider the summability $|R, \exp((\log n)^{\alpha}), 1|$, where $\alpha > 0$, and prove the following theorems:

THEOREM 1. If $\varphi(t)(\log 1/t)^{\beta} = O(1)$, then the Fourier series of f(t) is summable $|R, \lambda_n, 1|$ at t = x, where

$$\lambda_n = \exp\left((\log n)^{\alpha}\right), \quad 0 < \alpha < \beta \text{ and } \alpha < 1.$$

THEOREM 2. If $\varphi(t)(\log \log 1/t)^{\beta} = O(1)$, then the Fourier series of f(t) is summable $|R, \log n, 1|$, where $\beta > 1$.