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I. A metric in a circle. First we will introduce a metric in \w\ ^R
as follows. We define the distance (w, 0) of a point w (\w\ ^ R) from
w = 0 by
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be a linear transformation, which transforms \w\ < R into itself, such
that C/αO) = 0. We define the distance (a, ft) of any two points a, b in
\w\ < R by
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so that
( 4 ) (β, 6) - C ,̂ β).
It is easily seen that for any linear transformation U(w), which transforms
\w\ < R into itself,
( 5 ) Cί/(fl), C/(6)) - (β,ft)
and a circle (w, α) = p in our metric is an ordinary circle and the locus of
points, which are equidistant from two given pDints is a circle, which cuts
I w ΐ = R orthogonally.

In our metric, the triangle inequality
( 6 ) (a, c)< ζa, b) + (ft, c)

PROOF. We may assume that R = 1 and a = 0, 0 < ft < 1 by (5), so
that it suffices to prove:
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