ON A REGULAR FUNCTION WHICH IS OF CONSTANT ABSOLUTE VALUE ON THE BOUNDARY OF AN INFINITE DOMAIN

Masatsugu Tsuji

(Received January 30, 1950)

1. A metric in a circle. First we will introduce a metric in $|w| \leqq R$ as follows. We define the distance $(w, 0)$ of a point $w(|w| \leqq R)$ from $w=0$ by

$$
\begin{equation*}
(w, 0)=\frac{2 R|w|}{R^{2}+|w|^{2}}, \quad(0 \leqq(w, 0) \leqq 1) . \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
U_{a}(w)=\frac{R^{2}(w-a)}{R^{2}-\bar{a} w} \quad(|a|<R) \tag{2}
\end{equation*}
$$

be a linear transformation, which transforms $|w|<R$ into itself, such that $U_{a}(a)=0$. We define the distance (a, b) of any two points a, b in $|w|<R$ by

$$
\begin{align*}
(a, b) & =\left(U_{a}(b), 0\right)=\frac{2 R\left|U_{a}(b)\right|}{R^{2}+\left|U_{a}(b)\right|^{2}} \\
& =\frac{2 R\left|\frac{b-a}{R^{2}-\bar{a} b}\right|^{2}}{1+R^{2}\left|\frac{b-a}{R^{2}-\bar{a} b}\right|^{2}}
\end{align*}
$$

so that

$$
(a, b)=(b, a) .
$$

It is easily seen that for any linear transformation $U(w)$, which transforms $|w|<R$ into itself, (5)

$$
(U(a), U(b))=(a, b)
$$

and a circle $(w, a)=\rho$ in our metric is an ordinary circle and the locus of points, which are equidistant from two given points is a circle, which cuts $|w|=R$ orthogonally.

In our metric, the triangle inequality
(6) $\quad(a, c)<(a, b)+(b, c)$
holds.
PRoof. We may assume that $R=1$ and $a=0,0<b<1$ by (5), so that it suffices to prove:

$$
\begin{equation*}
\frac{|c|}{1+|c|^{2}}<\frac{b}{1+b^{2}}+\frac{\left|\frac{b-c}{1-b c}\right|}{1+\left|\frac{b-c}{1-b c}\right|^{2}} . \tag{7}
\end{equation*}
$$

