ON SUBPROJECTIVE SPACES, I

Tyuzi Adati
(Received March 12, 1951)

0. Introduction. In an n-dimensional affine space A_{u}, when geodesics are represented by $n-2$ homogeneous linear equations with respect to coordinates and another equation for a suitable coordinate system, B. Kagan ${ }^{(2)}$ called $A_{i c}$ a subprojective space.

The $n-2$ homogeneous linear equations represent a two-dimensional surface and may be written in the form

$$
\begin{equation*}
\gamma^{i} x^{h}=\alpha^{h} x^{n-1}+\beta^{n} x^{n} \quad(h=1,2, \cdots n-2), \tag{0.1}
\end{equation*}
$$

where α^{h} and β^{h} are constants. Consequently, in the subprojective space, geodesics lie on two-dimensional surfaces whose equations are given by the form (0.1) for a suitable coordinate system. From (0.1) we find that the affine connection $\Gamma_{\mu \nu}^{\lambda}$ takes the form

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\lambda}=\varphi_{\mu} \delta_{\nu}^{\prime}+\varphi_{\nu} \delta_{\mu}^{\lambda}+\varphi_{\mu \nu} \nu^{\lambda}, \tag{0.2}
\end{equation*}
$$

where φ_{μ} and $\varphi_{\mu \nu}$ are any covariant vector and isymmetric tensor respectively.

Conversely, if the affine connection is given by (0.2) for a suitable coordinate system, we can conclude that A_{n} is a subprojective space.
P. Rachevsky ${ }^{(3)}$ proved that, when φ_{μ} is a gradient vector, affine connection (0.2) is reducible to the form

$$
\Gamma_{\mu \nu \nu}^{\lambda}=\bar{u}_{\mu \nu} \bar{x}^{\lambda}
$$

by a transformation of coordinates

$$
x^{\lambda}=e^{\varphi} x^{\lambda},
$$

where $\varphi_{\mu}=\frac{\partial \varphi}{\partial x^{\mu}}$. The coordinate system x^{λ} is called the canonical system.
However, in a subprojective Riemannian space, since it is concluded from (0.2) that φ_{μ} is a gradient vector, Christoffel symbols of the second kind may be written as

$$
\left\{\begin{array}{c}
\lambda \tag{0.3}\\
\mu \nu
\end{array}\right\}=u_{\mu_{\nu}} x^{\lambda}
$$

with respect to the canonical coordinate system.
From (0.3) P. Rachevsky introduced relations, as a necessary and sufficient condition that a Riemannian space be subprojective,

$$
\text { (A) } \quad R_{\lambda \mu \nu \omega}=T_{\lambda \omega} y_{\mu \nu}+T_{\mu_{\nu} g_{\nu \omega}}-T_{\lambda \nu} g_{\lambda \omega}-T_{\mu \omega} g_{\lambda \nu},
$$

$$
\begin{equation*}
\text { (A') } T_{\mu \nu ; \omega}-T_{\mu \omega ; \nu}=0, \tag{0.4}
\end{equation*}
$$

$$
\text { (B) } T_{\mu \nu}=\rho g_{\mu \nu}+\rho_{\mu} \sigma_{\nu},
$$

where

$$
T_{\mu \nu}=\frac{1}{n-2}\left(R_{\mu \nu}-\frac{R}{2(n-1)} g_{\mu_{\nu}}\right),
$$

