NOTE ON DIRICHLET SERIES (III) ON THE SINGULARITIES OF DIRICHLET SERIES (III)

Chuji Tanaka

(Received August 3, 1951)

9. Theorem V. In this present Note, we shall generalize the Fundamental Theorem 1 established in the previous Note $[1]^{1}$. Let us put

(1.1)
$$F(s) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n s) \quad (s = \sigma + it, \ 0 \leq \lambda_1 < \lambda_2 < \ldots < \lambda_n \rightarrow +\infty).$$

We shall begin with

DEFINITION IV. The subsequence $\{\lambda_{n_k}\}$ (k = 1, 2, ...) is called the normal subsequence of density 0, provided that

$$\lim_{k\to\infty} k/\lambda_{n_k} = 0,$$

$$(\mathbf{b}) \qquad \qquad \lim_{k\to\infty} (\lambda_{n_k} - \lambda_{n_{k-1}}) > 0, \lim_{\substack{k,n\to\infty\\n \neq n_k}} |\lambda_{n_k} - \lambda_n| > 0.$$

Then, the Fundamental Theorem 1 is generalized in a following manner.

THEOREM V. Let (1.1) be simply convergent for $\sigma > 0$. Then s = 0 is the singular point for (1.1), provided that there exist two sequences $\{x_k\} (0 < x_k \uparrow \infty)$, $\{\gamma_k\}$ (γ_k : real) such that, for a normal subsequence $\{\lambda_{n_k}\}$ of density 0,

(a)
$$\lim_{k\to\infty} 1/x_k \cdot \log \left| \sum_{\substack{\left[\tau_k \right] \leq \lambda_n < r_k \\ \lambda_n \in \left\{ \lambda_{\lambda_n} \right\} }} \Re \left(a_n \exp \left(- i \gamma_k \right) \right) \right| = 0,$$

(b) $\lim_{k \to \infty} \sigma_k / [x_k] = 0$, where σ_k : the number of sign-changes of $\Re(a_n \exp(-i\gamma_k))$, $\lambda_n \in \{\lambda_{n_k}\}, \ \lambda_n \in I_k[[x_k](1-\omega), [x_k](1+\omega)] \ (0 < \omega < 1),$

(c) the sequence $\Re(a_n \exp(-i\gamma_k))$ ($\lambda_n \in \{\lambda_{n_k}\}, \lambda_n \in I_k$) has the normal sign-change in $\{I_k\}$ (k = 1, 2, ...).

By virtue of this theorem, we get

COROLLARY VIII. If the hypothesis of all theorems established in the previous Note (I-II) are satisfied, except for a normal subsequence $\{\lambda_{n_k}\}$ of density 0, then these theorems are also valid.

For example, from Corollary 8 we get

COROLLARY IX (S. Izumi, [2]). Let (1.1) be simple convergent for $\sigma > 0$. If $|\arg(a_n)| \leq \theta < \pi/2$, except for the normal subsequence $\{\lambda_{n_k}\}$ of density 0, then s = 0 is singular for (1.1).

10. Lemma. For its proof, we need next Lemma.

¹⁾ Vide references placed at the end.