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1. In this paper, I shall prove simply the following F. Riesz' fundamental
theorem on subharmonic functions. x>

THEOREM 1. Let u(z) be a subharmonic function in a domain D on the
z-plane, then there exists a positive mass-distribution μ{e) defined for Bore!
sets e in D, such that for any bounded domain Όx c D, which is contained
in D with its boundary,

u(z) = v(z) - [log . X . dμia) (z 6 A),
J \z—a\

where v(z) is harmonic in DL and such μie) is unique.
The main idea of the proof is as follows.
Let z be any point of D and a disc Δ(p, z): | ζ — z \ < p be contained in

D and put

(1) L(r, z:u)= ~ [ u(z + re»)dθ (0 < r < p).
o

Then L(r, z-.u) is an increasing convex function of log r, 2> so that
rdL(r,z:u)/dr>0 exists, except at most a countable number of values of
r. We call such a disc Δ(r, z) a non-exceptional disc. We define the mass μ
contained in a non-exceptional disc by

(2) MΔ(r)2))='-^^;>0.

Let e be any set in D. We cover e by at most a countable number of non-
exceptional discs Δ(n, zv) and put

(3) /*•(*)= i n f 2 ^ Δ ( r w ^ ) ) .
V

Then μ*(e) is the Caratheodory's outer measure of e, which is an additive
set function for Borel sets e. The main difficulty of the proof is prove
that for a non-exceptional disc

, z)) = μ(Δ(r, z)) (Lemma 3).
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