ABSOLUTE CESARO SUMMABILITY OF
 ORTHOGONAL SERIES

Tamotsu Tsuchikura
(Received March 19, 1953)

Introduction

For a series $\sum_{n=0}^{\infty} a_{n}$ denote by σ_{n}^{α} the n-th Cesàro mean of order α $(\alpha>-1)$, i. e.,

$$
\sigma_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{k=0}^{n} A_{n-k}^{\alpha} a_{k}
$$

where

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}
$$

If the series

$$
\sum_{n=0}^{\infty}\left|\sigma_{n+1}^{\alpha}-\sigma_{n}^{\alpha}\right|
$$

converges, we say that the series $\sum a_{n}$ is absolutely Cesàro summable with order α or briefly summable $|C, \alpha|$.

Various theorems concerning this summability of orthogonal series and of Fourier series were obtained by many authors. One of them is the following F.T. Wang's theorem [5]

Theorem A.(i) If the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)(\log n)^{1+\epsilon} \tag{1}
\end{equation*}
$$

is convergent for some $\varepsilon>0$, then the trigonometric series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{2}
\end{equation*}
$$

is summable $|C, \alpha|$ for almost every x, where $\alpha>1 / 2$;
(ii) If the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}\right)(\log n)^{2+\varepsilon} \tag{3}
\end{equation*}
$$

is convergent for some $\varepsilon>0$, then the series (2) is summable $|C, 1 / 2|$ for almost every x.
(iii) If $0<\alpha<1 / 2$, and if the series

