ON THE DIRECT-PRODUCT OF OPERATOR ALGEBRAS II

TAKASI TURUMARU

(Received September 2, 1952)

1. Introduction. R. Schatten-J. von Neumann [4] introduced the idea of direct-product of Banach spaces, and the author modified this considerations to C^* -algebras in the previous paper [7], and defined the direct-product of C^* -algebras.

Let A_1 and A_2 be any C^* -algebras with unit, and following R. Schatten-J. von Neumann. construct $A_1 \times A_2$ as the set of all expressions $\sum x_i \times y_i$ with the equivalence relation \cong , as A_1 , A_2 to be Banach spaces; and finally define the multiplication, involution and norm of expressions as follows:

product:
$$\left(\sum_{i=1}^{n} x_i \times y_i\right) \left(\sum_{j=1}^{m} s_j \times t_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i s_j \times y_i t_j,$$

involution: $\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*} = \sum_{i=1}^{n} x_{i}^{*} \times y_{i}^{*},$

norm:
$$\alpha\left(\sum_{i=1}^n x_i \times y_i\right) = \sup \left[\Phi\left(\left(\sum_{i=1}^n x_i \times y_i\right)\left(\sum_{i=1}^n x_i \times y_i\right)^*\right)^{1/2}: \Phi \in \mathfrak{S}\right],$$

where Θ denotes the set of positive type functional Φ's such that

$$\Phi\left(\sum_{j=1}^{m} s_{j} \times t_{j}\right) = \frac{\varphi \times \psi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)\left(\sum_{i=1}^{m} s_{j} \times t_{j}\right)\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*}\right)}{\varphi \times \psi\left(\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)\left(\sum_{i=1}^{n} x_{i} \times y_{i}\right)^{*}\right)}$$

 φ and ψ are pure states on A_1 and A_2 respectively, and $\sum_{i=1} x_i \times y_i$ is an arbitrary element of $A_1 \times A_2$; then α becomes a cross-norm on $A_1 \times A_2$ and $A_1 \times A_2$, is a non-complete C^* -algebra [7].

Now, let A_1 and A_2 be C^* -algebras on the Hilbert spaces H_1 and H_2 respectively. Then by [3,4], $\sum_{i=1}^n x_i \times y_i$ can be considered as bounded operator on $H=H_1\times_{\sigma}H_2$. In this paper, we consider the relation between C^* -algebra generated by $\sum_{i=1}^n x_i \times y_i$ as operator on H with operator bound as norm, and direct-product $A_1\times_{\sigma}A_2$ (§2); and we give more detailed discussions in the case where A_i are C^* -algebras of completely continuous operators on H_i (§3); and finally in §4 we prove some algebraic properties of $A_1\times_{\sigma}A_2$.