ON THE GENERATION OF STRONGLY ERGODIC SEMI-GROUPS OF OPERATORS 11*)

ISAO MIYADERA

(Received September 20, 1954)

1. Introduction. This paper is concerned with the problem of determining necessary and sufficient conditions that a linear operator is the infinitesimal generator of a semi-group of bounded linear operators. The first results in this direction were published independently by E. Hille $[2]^{1}$ and K. Yosida [10] for semi-groups of operators satisfying the following conditions:

(c₁) $T(\xi)$ is strongly continuous at $\xi = 0$,

 (c_2) $T(\xi) \leq 1 + \beta \xi$ for sufficiently small ξ , where β is a constant.

Their results were later generalized to semi-groups of operators satisfying only the condition (c_1) by R.S. Phillips [8] and the present author [4], independently. Further this result has been generalized to strongly measurable semi-groups of operators by W.Feller [1]. R.S. Phillips [9] and the present author [5] have recently given necessary and sufficient conditionsthat a given operator generates a semi-group of class (1, A) or of class $(1, C_1)$. In the present paper we give a necessary and sufficient condition that a given operator generates a semi-group of class (0, A) or of class $(0, C_{\alpha})$.

2. Definitions and preliminary theorems. Let $\{T(\xi); 0 \leq \xi < \infty\}$ be a semi-group of operators satisfying the following conditions:

(a) For each ξ , $0 \leq \xi < \infty$, $T(\xi)$ is a bounded linear operator from a complex Banach space X into itself and

(2.1)
$$T(\xi + \eta) = T(\xi)T(\eta) \qquad \text{for } \xi, \eta \ge 0,$$

$$T(0) = I($$
 = the identity).

(b) $T(\xi)$ is strongly measurable on $(0, \infty)$ (see [2, Definition 3.3.2]).

(c)
$$\int_{0}^{1} ||T(\xi)x|| d\xi < \infty \qquad \text{for each } x \in X.$$

A consequence of (a) and (b) is that $T(\xi)$ is strongly continuous for $\xi > 0$ (see [3] and [7]). If $T(\xi)$ satisfies the condition

(d)
$$\lim_{\lambda\to\infty}\lambda\int_0^\infty e^{-\lambda\xi}T(\xi)xd(\xi)=x \qquad \text{for each } x\in X,$$

then $T(\xi)$ is said to be of class (0, A). If, instead of (d), $T(\xi)$ satisfies the

^{*)} This paper is the continuation of the paper with the same title in this Journal, vol. 6 (1954).

¹⁾ Numbers in brackets refer to the references at the end of this paper.