# ON THE GENERATION OF STRONGLY ERGODIC SEMI-GROUPS OF OPERATORS II* 

Isao Miyadera

(Received September 20, 1954)

1. Introduction. This paper is concerned with the problem of determining necessary and sufficient conditions that a linear operator is the infinitesimal generator of a semi-group of bounded linear operators. The first results in this direction were published independently by E. Hille [2] ${ }^{1)}$ and K. Yosida [10] for semi-groups of operators satisfying the following conditions:
$\left(c_{1}\right) T(\xi)$ is strongly continuous at $\xi=0$,
( $\left.c_{2}\right) \quad T(\xi) \leqq 1+\beta \xi$ for sufficiently small $\xi$, where $\beta$ is a constant.
Their results were later generalized to semi-groups of operators satisfying only the condition ( $c_{1}$ ) by R.S. Phillips [8] and the present author [4], independently. Further this result has been generalized to strongly measurable semi-groups of operators by W.Feller [1]. R.S. Phillips [9] and the present author [5] have recently given necessary and sufficient conditionsthat a given operator generates a semi-group of class $(1, A)$ or of class $\left(1, C_{1}\right)$. In the present paper we give a necessary and sufficient condition that a given operator generates a semi-group of class $(0, A)$ or of class ( 0 , $\boldsymbol{C}_{\alpha}$ ).
2. Definitions and preliminary theorems. Let $\{T(\xi) ; 0 \leqq \xi<\infty\}$ be a semi-group of operators satisfying the following conditions:
(a) For each $\xi, 0 \leqq \xi<\infty, T(\xi)$ is a bounded linear operator from a complex Banach space $X$ into itself and

$$
\begin{array}{ll}
T(\xi+\eta)=T(\xi) T(\eta) & \text { for } \xi, \eta \geqq 0, \\
T(0)=I(=\text { the identity }) . &
\end{array}
$$

(b) $T(\xi)$ is strongly measurable on $(0, \infty)$ (see [2, Definition 3.3.2]).
(c)

$$
\int_{0}^{1} T(\xi) x d \xi<\infty \quad \text { for each } x \in X
$$

A consequence of $(a)$ and $(b)$ is that $T(\xi)$ is strongly continuous for $\xi$ $>0$ (see [3] and [7j). If $T(\xi)$ satisfies the condition

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \lambda \int_{n}^{\infty} e^{-\lambda \xi} T(\xi) x d(\xi)=x \quad \text { for each } x \in X \tag{d}
\end{equation*}
$$

then $T(\xi)$ is said to be of class $(0, A)$. If, instead of $(d), T(\xi)$ satisfies the

[^0]
[^0]:    *) This paper is the continuation of the paper with the same title in this Journal, vol. 6 (1954).

    1) Numbers in brackets refer to the references at the end of this paper.
