MEROMORPHIC FUNCTIONS WITH MAXIMUM DEFECT SUM

S.M.SHAH ${ }^{1)}$ AND S.K.SINGH ${ }^{2)}$

(Received June 29, 1959)

1. Introduction. Pfluger [6] proved that if $f(z)$ be an entire function of finite order ρ with maximum defect sum 2, then ρ must be an integer. In this note we extend this theorem to meromorphic functions. We prove

THEOREM. Let $f(z)$ be a meromorphic function of finite order ρ such that $\delta\left(a_{1}\right)=1, \sum_{2}^{\infty} \delta\left(a_{i}\right)=1$ where a_{1}, a_{2}, \ldots are any constants (finite or infinite) different from each other. Then ρ must be a positive integer and $f(z)$ must be of regular growth order ρ.

We show also by means of an example that $f(z)$ need not be of very regular growth order ρ or even proximate order $\rho(r)$.
2. Lemma. Let $F(z)$ be a meromorphic function of non-integer order $\rho>0$ and

$$
\lim _{r \rightarrow \infty} \sup \frac{N(r, a)+N(r, b)}{T(r)}=\chi(\rho)
$$

where a and b are any two distinct numbers finite or infinite; then if $p=$ $[\rho]>0$,

$$
\begin{equation*}
\chi(\rho) \geqq(\rho-p)(p+1-\rho) /\left\{3 e(2+\log p)(1+p)^{2}\right\} \tag{1}
\end{equation*}
$$

and if $p=0$,

$$
\begin{equation*}
\chi(\rho) \geqq 1-\rho \tag{2}
\end{equation*}
$$

Two proofs of this lemma, with different constants, ${ }^{3)}$ on the right hand sides of (1) and (2), are known [4; pp. 51-54; 10, theorem 2 (a)]. We sketch a different proof depending on the proximate order $\rho(r)$.

$$
\text { Since } T\left(r, \frac{\alpha F+\beta}{\gamma F+\delta}\right)=T(r, F)+O(1), \text { we may suppose } a=0, b=\infty
$$

Then

$$
\begin{equation*}
F(z)=z^{k} e^{q(z)} \prod_{1}^{\infty} E\left(\frac{z}{a_{i}}, p_{1}\right) / \prod_{1}^{\infty} E\left(\frac{z}{b_{j}}, p_{2}\right)=z^{k} e^{q(z)} P_{1} / P_{2} \tag{say}
\end{equation*}
$$

Presented to the American Math. Soc. Dec. 5, 1958.

1) Sponsored by the United States Army under contract No. DA-11-022-ORD-2059.
2) Sponsored by the National Science Foundation (U. S. A.) grant NSF-G4917.
3) The constants on the right hand sides of (1) and (2) are not "best possible."
