SOME INTEGRABILITY THEOREMS OF TRIGONOMETRIC SERIES AND MONOTONE DECREASING FUNCTIONS

SATORU IGARI

(Received October 7, 1959)

1. Let $\{\lambda_n\}$ be a decreasing sequence tending to zero as $n \to \infty$, and put

$$g_1(x) = \sum_{n=1}^{\infty} \lambda_n \cos nx, \quad h_1(x) = \sum_{n=1}^{\infty} \lambda_n \sin nx$$

Let $g_2(x)$ and $h_2(x)$ be both non-increasing functions bounded below in $(0, \pi)$ and such that

$$xh_2(x) \in L(0, \pi), \quad g_2(x) \in L(0, \pi).$$
 (A)

We put $a_n = \frac{2}{\pi} \int_0^{\pi} g_2(x) \cos nx \, dx$, $b_n = \frac{2}{\pi} \int_0^{\pi} h_2(x) \sin nx \, dx$.

Denote by L(x) a slowly increasing function, that is, L(x) is positive, continuous in $x \ge 0$ and for any fixed t > 0,

$$\frac{L(tx)}{L(x)} \to 1 \text{ as } x \to \infty.$$

S. Aljančić, R. Bojanić and M. Tomić established in the paper [2] that $x^{-\gamma}L(1/x)g_1(x) \in L(0, \pi)$ for $0 < \gamma < 1$, if and only if $\sum n^{\gamma-1}L(n)\lambda_n$ converges, and that $x^{-\gamma}L(1/x)h_1(x) \in L(0, \pi)$ for $0 < \gamma < 2$, if and only if $\sum n^{\gamma-1}L(n)\lambda_n$ converges.

D. Adamović proved in the paper [1] that $x^{\gamma-1}L(1/x)h_2(x) \in L(0, \pi)$ for $0 < \gamma < 2$, if and only if $\sum n^{-\gamma}L(n)b_n$ converges absolutely, and that $x^{\gamma-1}L(1/x)$ $g_2(x) \in L(0, \pi)$ for $0 < \gamma < 1$, if and only if $\sum n^{-\gamma}L(n)a_n$ converges absolutely.

And recently Chen Yung-Ming showed the interesting theorems which are related to the above results [3].

In this note, we shall make some inprovement of the inequalities in T. M. Flett [4] and apply it to the generalization of those four theorems.

In this note, the condition (A) is not assumed preliminarily.

If p = 1, our theorems 2 - 5 coincide with the just mentioned theorems.

The method of proof in Theorem 1 is due to T. M. Flett [4]. Theorems 2-5 correspond to Theorems 2-5 in G. Sunouchi [5] and our proofs will go along the line of [5] respectively.