SOME INTEGRABILITY THEOREMS OF TRIGONOMETRIC SERIES AND MONOTONE DECREASING FUNCTIONS

Satoru Igari

(Received October 7, 1959)

1. Let $\left\{\lambda_{n}\right\}$ be a decreasing sequence tending to zero as $n \rightarrow \infty$, and put

$$
g_{1}(x)=\sum_{n=1}^{\infty} \lambda_{n} \cos n x, \quad h_{1}(x)=\sum_{n=1}^{\infty} \lambda_{n} \sin n x .
$$

Let $g_{2}(x)$ and $h_{2}(x)$ be both non-increasing functions bounded below in $(0, \pi)$ and such that

$$
\begin{equation*}
x h_{2}(x) \in L(0, \pi), \quad g_{2}(x) \in L(0, \pi) \tag{A}
\end{equation*}
$$

We put $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} g_{2}(x) \cos n x d x, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} h_{2}(x) \sin n x d x$.
Denote by $L(x)$ a slowly increasing function, that is, $L(x)$ is positive, continuous in $x \geqq 0$ and for any fixed $t>0$,

$$
\frac{L(t x)}{L(x)} \rightarrow 1 \text { as } x \rightarrow \infty .
$$

S. Aljančić, R. Bojanić and M. Tomic established in the paper [2] that $x^{-\gamma} L(1 / x) g_{1}(x) \in L(0, \pi)$ for $0<\gamma<1$, if and only if $\sum n^{\gamma-1} L(n) \lambda_{n}$ converges, and that $x^{-\gamma} L(1 / x) h_{1}(x) \in L(0, \pi)$ for $0<\gamma<2$, if and only if $\sum n^{\gamma-1} L(n) \lambda_{n}$ converges.
D. Adamovic proved in the paper [1] that $x^{\gamma-1} L(1 / x) h_{2}(x) \in L(0, \pi)$ for $0<\gamma<2$, if and only if $\sum n^{-\gamma} L(n) b_{n}$ converges absolutely, and that $x^{\gamma-1} L(1 / x)$ $g_{2}(x) \in L(0, \pi)$ for $0<\gamma<1$, if and only if $\sum n^{-\gamma} L(n) a_{n}$ converges absolutely.

And recently Chen Yung-Ming showed the interesting theorems which are related to the above results [3].

In this note, we shall make some inprovement of the inequalities in T. M. Flett [4] and apply it to the generalization of those four theorems.

In this note, the condition (A) is not assumed preliminarily.
If $p=1$, our theorems $2-5$ coincide with the just mentioned theorems.
The method of proof in Theorem 1 is due to T. M. Flett [4]. Theorems $2-5$ correspond to Theorems 2-5 in G. Sunouchi [5] and our proofs will go along the line of [5] respectively.

