SOME RESULTS ON THE DIRECT PRODUCT OF W*-ALGEBRAS

TEISHIRÔ SAITÔ AND JUN TOMIYAMA

(Received May 30, 1960)

Introduction. In connection with the papers [4] and [5], the following question arises: Let M and N be finite factors, and let G and H be the groups of *-automorphisms of M and N respectively. Then, is it true that the fixed algebra of $G \times H^{1}$ in $M \otimes N$ is the direct product of the fixed algebra of G in M and that of H in N? The above question motivates the preparation of this paper, but our investigation will be done from the standpoint of the general theory of the direct product of W^* -algebras, and the main result will be stated in Theorem 1 in § 1. In § 2, as the applications of Theorem 1, two results will be proved. Theorem 2 is a structure theorem on the direct product of maximal abelian W^* -subalgebras, and Theorem 3 gives the affirmative answer to the question of the fixed algebra.

1. Throughout our discussion, we mean by $R(A_{\alpha})$ the W^* -algebra generated by the family of operators A_{α} and $R(\mathbf{M}, \mathbf{N})$ the one generated by the W^* algebras \mathbf{M}, \mathbf{N} .

The following theorem is the main result of this paper.

THEOREM 1. Let M, P and N, Q be W^* -algebras on some Hilbert space H and K respectively, and satisfy the condition

(1) $((\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}'))' = (\mathbf{M} \cap \mathbf{P}')' \otimes (\mathbf{N} \cap \mathbf{Q}')';$ then we have

(2) $\mathbf{M} \otimes \mathbf{N} \cap (\mathbf{P} \otimes \mathbf{Q})' = (\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}').$

This theorem shows that if the, so-called, commutation theorem holds for a W^* -algebra $(\mathbf{M} \cap \mathbf{P}') \otimes (\mathbf{N} \cap \mathbf{Q}')$ we get the conclusion (2). Hence, for example, if **A** and **B** are maximal abelian W^* -subalgebras of **M** and **N** respectively we have the relation (2) for $\mathbf{A} \otimes \mathbf{B}$ because, in this case, $((\mathbf{M} \cap \mathbf{A}') \otimes (\mathbf{N} \cap \mathbf{B}'))' = (\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$. Therefore we know that the direct product of maximal abelian W^* -subalgebras **A** and **B** is also a maximal abelian W^* -subalgebra of $\mathbf{M} \otimes \mathbf{N}$. If **M** and **N** are finite W^* -algebras, their W^* -subalgebras are also of finite type, and hence the commutation theorem always holds for these W^* -algebras. Therefore we have the conclusion

¹⁾ For the definition of $G \times H$, see Lemma 2 in [4].