A GAP SEQUENCE WITH GAPS BIGGER THAN THE HADAMARD'S

Shigeru Takahashi

(Received July 3, 1960)

1. Introduction. In the present note let $f(t)$ be a measurable function satisfying the conditions;

$$
\begin{equation*}
f(t+1)=f(t), \int_{0}^{1} f(t) d t=0 \text { and } \int_{0}^{1} f^{2}(t) d t=1 \tag{1.1}
\end{equation*}
$$

In [2] M. Kac noticed that if $f(t)$ is a function of Lip α or of bounded variation, then it is seen that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left|\left\{t ; \frac{1}{A_{N}} \sum_{k=1}^{N} a_{k} f\left(n_{k} t\right)<\omega\right\}\right|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u^{2} / 2} d u \tag{1.2}
\end{equation*}
$$

where $\left\{n_{k}\right\}$ is a sequence of integers such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} n_{k+1} / n_{k}=+\infty \tag{1.3}
\end{equation*}
$$

and $\left\{a_{k}\right\}$ is any sequence of real numbers satisfying the following conditions

$$
\begin{equation*}
A_{N}^{2}=\sum_{k=1}^{N} a_{k}^{2} \rightarrow+\infty \text { and } \max _{1 \leqq k \leqq N}\left|a_{k}\right|=o\left(A_{N}\right), \quad \text { as } N \rightarrow+\infty \tag{1.4}
\end{equation*}
$$

Also in [4] G. Morgenthaler proved that if $f(t)$ is bounded and $\left\{a_{k}\right\}$ satisfies (1.4), then there exists a sequence $\left\{f\left(n_{k} t\right)\right\}$ independent of $\left\{a_{k}\right\}$ and (1.2) holds.

On the other hand P. Erdös [2] showed that if $f(t)=\cos 2 \pi t+\cos 4 \pi t$, then we have

$$
\lim _{N \rightarrow \infty}\left|\left\{t ; \frac{1}{\sqrt{N}} \sum_{k=1}^{N} f\left(\left(2^{k}-1\right) t\right)<\omega\right\}\right|=\frac{1}{\sqrt{\pi}} \int_{0}^{1} d x \int_{-\infty}^{\omega|2| \cos \pi x \mid} e^{-u^{2}| |^{2}} d u
$$

From above facts we see that if (1.2) holds, the properties of n_{k+1} / n_{k} and the smoothness of $f(t)$ become subjects of considerations (cf. [3]). The purpose of this note is to prove the following

THEOREM. Let $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ satisfy (1.3) and (1.4) respectively and for some $\varepsilon>0$,

$$
\begin{equation*}
\left[\int_{0}^{1}\left\{f(t)-S_{n}(t)\right\}^{2} d t\right]^{1 / 2}=O\left(\frac{1}{(\log n)^{1+e}}\right), \quad \text { as } n \rightarrow+\infty \tag{1.5}
\end{equation*}
$$

