ON THE ($K, 1, \alpha$) METHODS OF SUMMABILITY

Hiroshi Hirokawa

(Received March 30, 1960)

1. Zygmund [5] defined the ($K, 1$) method of summability of a series. This method has the several similar properties to those of the Riemann's $(R, 1)$ method of summability. Concerning the method ($R, 1$), we have defined, in the paper [1], the Riemann-Cesàro method $(R, 1, \alpha)$ which reduces the method $(R, 1)$ when $\alpha=-1$. In this note, by the analogous method, concerning the method ($K, 1$), we shall define the new methods of summability and show that the new methods have the similar properties to those of the methods ($R, 1, \alpha$).

Let α be a real number such that $-1 \leqq \alpha \leqq 0$, and let s_{n}^{α} be the Cesàro sum, of order α, of a series $\sum_{n=0}^{\infty} a_{n}$ with $a_{0}=0$. If the series in

$$
\tau(\alpha, t)=t^{\alpha+1} \sum_{n=1}^{\infty} s_{n}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x
$$

converges in some interval $0<t<t_{0}$, and if

$$
\lim _{t \rightarrow 0+} \tau(\alpha, t)=B_{\alpha} s
$$

where

$$
B_{\alpha}=\left\{\begin{array}{lr}
\pi / 2 & \alpha=-1 \\
(\alpha+1)^{-1} \sin (\alpha+1) \pi / 2 & -1<\alpha<0 \\
1 & \alpha=0
\end{array}\right.
$$

then, we will say that the series $\sum_{n=0}^{\infty} a_{n}$ is evaluable $(K, 1, \alpha)$ to s. When $\alpha=-1$, the method ($K, 1, \alpha$) reduces the method ($K, 1$).
2. The above constant B_{α} is obtained if we consider the ($K, 1, \alpha$) transform of the series

$$
0+1+0+0+\ldots \ldots
$$

For $\alpha=-1$, it is obvious that $B_{\alpha}=\pi / 2$. For $-1<\alpha<0$, since, A_{n}^{α} denoting the Andersen notation,

$$
\tau(\alpha, t)=t^{\alpha+1} \sum_{n=1}^{\infty} A_{n-1}^{\alpha} \int_{t}^{\pi} \frac{\sin n x}{2 \tan x / 2} d x
$$

