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Introduction. One of the important questions in the theory of the crossed

products of rings of operators is the following: Is the crossed product of

a finite factor M also a finite factor for any group G of automorphisms of

M ? The answer for this question is negative in general ([4]), and some

kinds of conditions on G under which the crossed product is a factor have

been obtained ([4]). In § 2 we shall deal with this question when G is abelian,

and sharpen the results in [2], In §3 we shall consider the behaviour of the

action of G in the crossed product and give a condition on G under which

the crossed product is a factor.

1. Throughout this paper, we assume that all "W^-algebras are finite

factors with the invariants C = 1. An automorphism of a W"*-algebra means

a ^-automorphism, and a group of outer automorphisms of a W*-algebra is

a group of automorhisms all member of which are outer automorphisms except

the unit. The unit of a group will be denoted by e. R(aλ\\ € Λ) means the

W^-algebra generated by the family of operators a\ (λ € Λ).

For convenience sake, we shall explain the construction of the crossed

product. Let M be a finite factor with the invariant C = 1 on a Hubert space

H and G a group of automorphisms of M. Let φ be a separating and generat-

ing trace vector for M. For each σ € G we define

uσ(aφ) = aσ~lφ for all a € M

where aτ is the image of a by an automorphism r. Then uσ can be extended

to a unitary operator on H which will be also denoted by uσ, and σ^uσ is a

faithful unitary representation of G on H such that

ulauσ = ασ for all a € M.

Now consider the Hubert space H(^)/2(G). If we choose the complete
orthonormal system \£a}asG in /2(G) such as

1 if γ = a

0 otherwise,

each vector of H®/2(G) is expressed in the form Σ <p«0£α where φ<* € H


