ON GROUPS OF AUTOMORPHISMS OF FINITE FACTORS

TEISHIRÔ SAITÔ

(Received June 7, 1961)

Introduction. One of the important questions in the theory of the crossed products of rings of operators is the following: Is the crossed product of a finite factor \mathbf{M} also a finite factor for any group G of automorphisms of \mathbf{M} ? The answer for this question is negative in general ([4]), and some kinds of conditions on G under which the crossed product is a factor have been obtained ([4]). In §2 we shall deal with this question when G is abelian, and sharpen the results in [2]. In §3 we shall consider the behaviour of the action of G in the crossed product and give a condition on G under which the crossed product is a factor.

1. Throughout this paper, we assume that all W^* -algebras are finite factors with the invariants C = 1. An automorphism of a W^* -algebra means a *-automorphism, and a group of outer automorphisms of a W^* -algebra is a group of automorphisms all member of which are outer automorphisms except the unit. The unit of a group will be denoted by e. $R(a_{\lambda} | \lambda \in \Lambda)$ means the W^* -algebra generated by the family of operators a_{λ} ($\lambda \in \Lambda$).

For convenience sake, we shall explain the construction of the crossed product. Let **M** be a finite factor with the invariant C = 1 on a Hilbert space **H** and G a group of automorphisms of **M**. Let φ be a separating and generating trace vector for **M**. For each $\sigma \in G$ we define

$$u_{\sigma}(a\varphi) = a^{\sigma^{-1}}\varphi$$
 for all $a \in \mathbf{M}$

where a^{τ} is the image of a by an automorphism τ . Then u_{σ} can be extended to a unitary operator on **H** which will be also denoted by u_{σ} , and $\sigma \rightarrow u_{\sigma}$ is a faithful unitary representation of G on **H** such that

$$u_{\sigma}^*au_{\sigma}=a^{\sigma}$$
 for all $a\in\mathbf{M}$.

Now consider the Hilbert space $\mathbf{H} \otimes l_2(G)$. If we choose the complete orthonormal system $\{\boldsymbol{\varepsilon}_{\alpha}\}_{\alpha \in G}$ in $l_2(G)$ such as

$$\mathcal{E}_{\alpha}(\boldsymbol{\gamma}) = \left\{egin{array}{cc} 1 & ext{if} & \boldsymbol{\gamma} = \boldsymbol{lpha} \\ 0 & ext{otherwise,} \end{array}
ight.$$

each vector of $\mathbf{H} \otimes l_2(G)$ is expressed in the form $\sum \varphi_{\alpha} \otimes \mathcal{E}_{\alpha}$ where $\varphi_{\alpha} \in \mathbf{H}$