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1. Let F(2) be a meromorphic function and let T(», F) be its Nevanlinna
characteristic function. Let N(r, @) = N(r, F — a); N(r, F) = N(r, ) have the
usual meaning in the Nevanlinna theory.
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If 8(a) > 0 we say that @ is an exceptional value for F(z) in the sense of
Nevanlinna (e. v. N); and if A(z) > 0 we call @ as an e.v.V (exceptional value
in the sense of Valiron).

2. Let f(2) be an entire function and let

u(r, f) = ir) = Min | f(z) |.
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It is clear that if O is an asymptotic value for f(2) then w(»)—>0 as
r—> oo, We show that the converse is not true. We prove:

THEOREM 1. For an entire function f(z), the minimum modulus ur)
tending to zero does not imply that 0 is an asymptotic value.

LEMMA If 0 is an e.v. N for the entire function f(z) then u(r)—0 as
r—> ©o,

PROOF. In the terminology of Nevanlinna
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