ON THE CROSS-NORM OF THE DIRECT PRODUCT OF C*-ALGEBRAS

MASAMICHI TAKESAKI

(Received December 5, 1963)

In [7] Turumaru introduced the notion of the direct product of C^* -algebras. Let $\mathfrak{A}_1 \bigcirc \mathfrak{A}_2$ be the algebraic direct product of two C^* -algebras \mathfrak{A}_1 and \mathfrak{A}_2 . Then $\mathfrak{A}_1 \odot \mathfrak{A}_2$ becomes a *-algebra under the natural algebraic operations. Turumaru's C^* -direct product $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is given as the completion of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ under the norm given by

$$\left\| \sum_{i=1}^{n} a_{1,i} \otimes a_{2,i} \right\|$$

$$= \sup \frac{\varphi_1 \otimes \varphi_2 \left[\left(\sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \right)^* \left(\sum_{i=1}^{n} a_{1,i} \otimes a_{2,i} \right)^* \left(\sum_{i=1}^{n} a_{1,i} \otimes a_{2,i} \right) \left(\sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \right)^{1/2} }{\varphi_1 \otimes \varphi_2 \left[\left(\sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \right)^* \left(\sum_{j=1}^{m} x_{1,j} \otimes x_{2,j} \right)^{1/2} } \right]^{1/2}$$

 $\sum_{i=1}^{n} a_{1,i} \otimes a_{2,i} \in \mathfrak{A}_1 \odot \mathfrak{A}_2, \text{ where } \varphi_1, \varphi_2 \text{ run over the set of all states of } \mathfrak{A}_1, \mathfrak{A}_2 \text{ and}$

 $\sum_{j=1}^{n} x_{1,j} \otimes x_{2,j} \text{ runs over } \mathfrak{A}_1 \bigcirc \mathfrak{A}_2. \text{ Let us call this norm } T\text{-cross norm. Then}$

T-cross norm has the following property: If π_1 and π_2 are representations of \mathfrak{A}_1 and \mathfrak{A}_2 to Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 respectively, then the naturally defined product representation $\pi_1 \otimes \pi_2$ of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ to the product Hilbert space $\mathfrak{H}_1 \otimes \mathfrak{H}_2$ is continuous with respect to *T*-cross norm, so that $\pi_1 \otimes \pi_2$ can be extended to the representation of $\mathfrak{A}_1 \otimes \mathfrak{A}_2$ which is also denoted by $\pi_1 \otimes \pi_2$. Besides, if π_1 and π_2 are faithful then $\pi_1 \otimes \pi_2$ becomes faithful. Hence *T*-cross norm is very natural norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$. But it is another matter whether or not *T*-cross norm is unique compatible norm of $\mathfrak{A}_1 \odot \mathfrak{A}_2$, where a norm β of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ is called compatible to the algebraic structure of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ if the completion of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ by β becomes a *C**-algebra and $\|x_1 \otimes x_2\|_{\beta} \leq \|x_1\| \cdot \|x_2\|$ for $x_1 \in \mathfrak{A}_1$ and $x_2 \in \mathfrak{A}_2$. In the present note we shall answer for this question that *T*-cross norm is smallest among the compatible norms and that *T*-cross norm is unique in $\mathfrak{A}_1 \odot \mathfrak{A}_2$ for *C**-algebra \mathfrak{A}_1 of certain class but it is not so in general. So we say that *C**-algebra \mathfrak{A}_1 has the property (*T*) if the following is true;

(T): For every C*-algebra \mathfrak{A}_2 T-cross norm of $\mathfrak{A}_1 \bigcirc \mathfrak{A}_2$ is the unique compatible norm.

LEMMA 1. If π is a *-representation of $\mathfrak{A}_1 \odot \mathfrak{A}_2$ to a Hilbert space \mathfrak{H} which