Tôhoku Math. Journ. Vol. 18, No. 1, 1966

AN EXTENSION OF AN APPROXIMATION PROBLEM PROPOSED BY K. ITÔ

LOTHAR HOISCHEN

(Received September 22, 1965)

The following problem, which first was proposed by Itô, is of some interest to the theory of probability:

If f(n) is a sequence with

(1)
$$\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} |f(n)|^2 < \infty ,$$

does there always exist a polynomial P(x) such that

$$\sum_{n=0}^{\infty}rac{\lambda^n}{n!} |f(n)-P(n)|^2 < arepsilon$$

for any assigned $\varepsilon > 0$?

Izumi [2] has given an affirmative answer if (1) is strengthened to

$$\sum\limits_{n=0}^{\infty} \, |\, f(n)|^{\, 2} / w^n < \infty \quad ext{for some} \quad w > 0 \, .$$

A more general existential proof, based upon the Hahn-Banach Theorem is due to Edwards [1].

In this paper we shall obtain a very short and simple proof of the following extension of Itô's problem:

THEOREM. Suppose that

(2.1)
$$\int_0^\infty H(|f(t)|) \, d\alpha(t) < \infty ,$$

f(t) continuous for $t \ge 0$, $H(t) \ge 0$ continuous and not decreasing for $t \ge 0$,