Tôhoku Math. Journ. Vol. 18, No. 2, 1966

A NOTE ON THE LITTLEWOOD-PALEY FUNCTION $g^*(f)$

SATORU IGARI

(Received February 28, 1966)

In a previous paper [1], we studied the functions of Littlewood-Paley, Lusin and Marcinkiewicz. And now we wish to consider a proof for the function g^* independently of the decomposition theorem on Fourier series. The function $g^*(x, f)$ is defined for f of L(0, 1) as follows;

$$g^{*}(x,f) = g^{*}(f) = \left(|\hat{f}_{0}|^{2} + \sum_{n=1}^{\infty} \frac{|s_{n}(x,f) - \sigma_{n}(x,f)|^{2}}{n} \right)^{1/2}$$

where \hat{f}_n is the *n*-th Fourier coefficient of f and s_n, σ_n denote the *n*-th partial sum of the Fourier series of f and its *n*-th Cesàro mean respectively.

THEOREM. Let 1 , then

$$A_p \| f \|_p \leq \| g^*(f) \|_p \leq A'_p \| f \|_p$$

for all f of $L^{p}(0,1)$, A_{p} , A'_{p} being positive constants independent of f.

Let F_n be *n*-th Fejér kernel, that is,

$$F_n(x) = \sum_{\nu=-n}^n \left(1 - \frac{|\nu|}{n+1}\right) e^{2\nu\pi i x} = \frac{1}{n+1} \left\{\frac{\sin(2n+1)\pi x}{\sin\pi x}\right\}^2$$

and let us denote $k_0(x) = 1$ and

$$k_n(x) = \frac{F_{2n}(x) - F_n(x)}{c_n \sqrt{n}}$$
 $n = 1, 2, \cdots,$

 c_n being constants bounded away both from 0 and from infinity which will be defined later. Our proof composes, as that of [1] on the decomposition theorem, of estimation of the vector valued kernel $K(x) = (k_0(x), k_1(x), \cdots)$. Let us put $\Re f = K * f$ for f of L(0, 1) and $\Re g = \int \langle g(y), K(x-y) \rangle dy$ for g of