Tôhoku Math. Journ. Vol. 18, No. 2, 1966

CLOSED GEODESICS ON CERTAIN RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE

YÔTARÔ TSUKAMOTO

(Received December 8, 1965)

1. Introduction. To investigate the relations among geodesics, curvature and \cdot manifold structures is very interesting and important. The following theorem is well known (cf. Klingenberg [5]).

THEOREM. Let M be a 2-dimensional complete simply connected Riemannian manifold with Gaussian curvature K, $0 < k \leq K \leq 1$, where k is a constant. Let G be a simple closed geodesic on M and L(G) be its length. Then the following inequalities are satisfied:

$$2\pi \leq L(G) \leq 2\pi/\sqrt{k}$$
.

In particular, if there exists a closed geodesic of length 2π on M, then M is isometric to the sphere with constant curvature 1.

And if there exists a simple closed geodesic of length $2\pi/\sqrt{k}$ on M, then M is isometric to the sphere with constant curvature k.

In this paper we shall prove similar results in the higher dimensional case. By a geodesic triangle, we always mean a geodesic triangle composed of three shortest geodesic arcs.

THEOREM A. Let M be an n-dimensional complete simply connected Riemannian manifold with sectional curvature K, $0 < k \leq K \leq 1$, where k is a constant. Let G be a closed geodesic which can be decomposed into a geodesic triangle and L(G) be its length.

Then the following inequalities are satisfied

$$2\pi \leq L(G) \leq 2\pi/\sqrt{k} .$$

In particular, if there exists a closed geodesic of length $2\pi/\sqrt{k}$ on M which can be decomposed into a geodesic triangle, then M is isometric to the