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Introduction. Almost contact manifolds have, as is well known, an aspect
of the odd-dimensional version of almost complex manifolds, and especially normal
contact Riemannian manifolds are looked upon as what correspond to Kahler
manifolds. The purpose of this paper is to develop a theory on a normal
contact Riemannian manifold parallel to that of Kahler manifold through the
researches of complex-valued differential forms on the former.

After introducing several operators in the beginning section, in §2 we shall
see that a trigrade structure, corresponding to the bigrade one in almost complex
manifold, is naturally induced in the algebra of complex-valued forms on a
contact Riemannian manifold. In §3 normal contact Riemannian manifolds are
discussed from our standpoint of view and §4 is devoted to the investigations
of harmonic forms on a compact normal contact Riemannian manifolds. The
main result in this section is Theorem 4.4 which asserts the evenness of the
r-th Betti numbers of the manifold for certain values of r. Some further
researches are pursued in the last section.
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1. Preliminaries. Given an ra-dimensional differentiable manifold M, we
denote by V(M) the space of complex-valued vector fields on M, by A(M)
that of complex-valued forms on M and by Πr (r = 0,1, , m) the projection
of A(M) onto the subspace AT(M) of r-forms.

Let M be a contact Riemannian manifold with the structure (η, g). We
denote the associated vector field by ξ and the (1, l)-tensor field by φ as usual.
These are related in the following manner:

( g(ξ, X) = η(X), r,(ξ) = 1, φξ = 0, η(φX) = 0 ,
(1.1)

( 2g(X, φY) = dη(X, Y), <£2X=


