CORRECTION:

ISOMETRY BETWEEN $H^p(dm)$ AND THE HARDY CLASS H^p

(This journal, 18(1966), pp.311-315)

Nozomu Mochizuki

(Received May 24, 1967)

Each proof of Theorem 1 and 2 of [1] contains an error. We concluded that $\mu' = j(m)$ (m' = m) from

$$\int_{\mathfrak{m}} \hat{f} \ d\mu' = \int_{\mathfrak{x}} \hat{f} \ dj(m), \ f \in H^{\infty}(dm)$$

$$\left(\int_{\mathfrak{M}} \hat{f} \ dm' = \int_{\mathfrak{x}} f \ dm, \ f \in A\right),$$

but this is incorrect and both theorems are not true. We abandon Theorem 2. As for Theorem 1, what the proof guarantees is the fact that τ^* is a norm-decreasing algebra homomorphism of $H^{\infty}(dm)$ onto $H^{\infty}(D)$, or the restriction to \mathfrak{P} of $H^{\infty}(dm)$ is isomorphic to $H^{\infty}(D)$. Therefore, $H^{\infty}(dm)$ is isometric and isomorphic to $H^{\infty}(C)$ if and only if the generalized corona theorem holds, i.e., \mathfrak{P} is dense in \mathfrak{m} . If this condition is satisfied, $H^{p}(dm)$ and $H^{p}(D)$ are isometric and isomorphic for $1 \leq p < \infty$.

Dr. S.Merrill deals with the same problem from a more general point of view, obtaining the following necessary and sufficient condition.

 $H^p(dm)$ and $H^p(D)$, $1 \le p \le \infty$, are isometric and isomorphic if and only if $H^\infty(dm)$ is w^* -maximal in $L^\infty(dm)$. Moreover, he gives an example which shows that $H^\infty(dm)$ is not necessarily isomorphic to $H^\infty(D)$ even if m belongs to a non-trivial Gleason part.

We thank Professors C.E.Rickart and S.Merrill for calling our attention to the publication: S.Merrill, H^p spaces derived from function algebras, Ph.D.Dissertation, Yale University (1966).