Tôhoku Math, Journ. Vol. 19, No. 3, 1967

ON THE PREDUALS OF W*-ALGEBRAS

KAZUYUKI SAITÔ

(Received May 22, 1967)

In the present paper , we shall show some properties of weakly relatively compact subsets of predual of W^* -algebra, which were also discussed in [1], [10] and [12].

Let M be a W^* -algebra (namely, C^* -algebra with a dual structure as a Banach space [7]), M^* (resp. M_*) be the dual (resp. predual) of M, and let M_h , M_p , and M_{pl} be the set of all Hermitian elements, projections, and partial isometries in M, respectively.

The weak topology on M_* is $\sigma(M_*, M)$ -topology in the sense of [3; p. 50]. For any linear functional φ in M, we define the functionals φa , $a\varphi$, φ^* and $|\varphi|$ on M as follows: $\varphi a(b) = \varphi(ab), a \ \varphi(b) = \varphi(ba), \ \varphi^*(b) = \overline{\varphi(b^*)}$ for all b $\in M$, where $\overline{\varphi(b^*)}$ is the complex conjugate of $\varphi(b^*)$. $|\varphi|$ is said the absolute value of φ [8]. If φ is in M_* , then φa , $a\varphi$, and φ^* are also in M_* . We denote the set $\{|\varphi|; \varphi \in K\}$ by |K|.

A functonal φ on M is positive if $\varphi(a^*a) \ge 0$ for all $a \in M$. Denote the set of all positive functionals in M^* (resp. M_*) by M^{*+} (resp. M_*^+).

We may consider the following five typical topologies on M:

(1) The norm topology as a Banach space, (2) The Mackey topology τ on M, namely, the togology of uniform convergence on the weakly relatively compact sets of M_* , (3) The topology s^* defined by a family of semi-norms $\{\alpha_{\varphi}, \alpha_{\varphi}^*; \varphi \in M_*^+\}$, where $\alpha_{\varphi}(x) = \varphi(x^*x)^{1/2}$, and $\alpha_{\varphi}^*(x) = \varphi(xx^*)^{1/2}$ for $x \in M$, (4) The topology s defined by a family of semi-norms $\{\alpha_{\varphi}; \varphi \in M_*^+\}$, (5) The weak topology on M as point, which is merely called σ -topology. The topology s^* (resp. s and σ) coincides with strong *-operator topology, namely the operator topology defined by a family of semi-norms $\{\|x\xi\| \| \|x^*\xi\| ; \xi \in \mathfrak{H}\}$ (resp. the strong operator topology and the weak operator topology) on bounded spheres, when M is faithfully represented as a von Neumann algebra on a Hilbert apace \mathfrak{H} . The τ -topology is equivalent to the s^* -topology on bounded spheres. [1]

In the followings, theorem 1 shows a characterization of the finiteness of W^* -algebras. Theorem 2 and the following remark concern with a weak convergence property in the predual of an atomic W^* -algebra, which is a non-commutative generalization of a well known theorem in the Lebesgue L^1 , and the last theorem 3 deals with weakly relatively compact subsets lying in