Tôhoku Math. Journ. 20(1968), 91-100.

ON AUTOMORPHISM GROUPS OF SOME CONTACT RIEMANNIAN MANIFOLDS

Μακότο Νάμβα

(Received September 25, 1967)

1. Introduction. Recently Dr. S. Tanno offered the author a conjecture that the dimension of the automorphism group of a contact Riemannian manifold of dimension 2n+1 will not exceed $(n+1)^2$. It has been proved that the unit sphere S^{2n+1} with the standard Sasakian structure has the automorphism group of dimension $(n+1)^2$. ([3]). In this paper, we shall examine the conjecture for some kinds of contact Riemannian manifolds. Especially, we shall prove that the dimension of the automorphism group of Euclidean space E^{2n+1} with its standard contact metric structure is just $(n+1)^2$.

The author wishes to express his gratitude to Dr. S. Tanno for his suggestions.

2. Expressions in adapted local coordinate systems. A differentiable manifold M of dimension 2n+1 is called a contact Riemannian manifold, [2], if it admits a vector field ξ , a 1-form η , a 1-1 tensor field Φ and a Riemannian metric G such that

(2.1)
$$\eta(\xi) = 1$$
,

$$(2.2) \qquad \Phi^2 + 1 = \xi \otimes \eta,$$

$$(2.3) G(\xi, X) = \eta(X),$$

(2.4)
$$G(\Phi X, \Phi Y) = G(X, Y) - \eta(X) \eta(Y),$$

(2.5)
$$G(X, \Phi Y) = d\eta(X, Y) = \frac{1}{2} \{ X \eta(Y) - Y \eta(X) - \eta[X, Y] \},$$

where X and Y are vector fields.

Let M be a contact Riemannian manifold of dimension 2n+1 with ξ , η , Φ and G. A vector field X on M is called an infinitesimal automorphism if

$$(2.6) L_x \eta = 0$$

and