Tôhoku Math. Journ. 20 (1968), 199-206.

A STRUCTURE THEOREM OF AUTOMORPHISMS OF VON NEUMANN ALGEBRAS

TAKATERU OKAYASU

(Received November 30, 1967)

In a recent few years automorphisms and derivations of C^* -algebras, especially of von Neumann algebras, have been investigated by various authors [1], [6], [7], [8], [11] and etc. We also are concerned with them in this paper. Our main purpose is to establish a structure theorem of (not necessarily *-preserving) automorphisms of von Neumann algebras, which we may call the polar decomposition theorem. It asserts that any automorphism of a von Neumann algebra is composed of an *inner* automorphism defined by an invertible positive operator and a *-automorphism in the unique way. This fact seems to assure us that the study of automorphisms may be reduced, in a sense, to that of *-preserving ones. For example, it can be said that the property that an automorphism is outer is due to its *-preserving part. Also we know, as its immediate consequence, that any automorphism of a von Neumann algebra is σ -strongly (that is, in the strongest operator-topology), as well as σ -weakly, bicontinuous. These arguments can be applied to those of isomorphisms between von Neumann algebras. Particularly we can give an answer to a problem proposed by S. Sakai in his lecture note [10], deciding that any isomorphism between von Neumann algebras is σ -strongly bicontinuous.

The author wishes to express here his gratitude to Dr. M. Takesaki for his helpful suggestions.

1. Preliminaries. It is assumed that all C^* -algebras under consideration have identities. Automorphisms, isomorphisms and representations of C^* -algebras are said to be *-automorphisms, *-isomorphisms and *-representations, respectively, if they are *-preserving.

Let H be a Hilbert space and B(H) the C*-algebra of all bounded linear operators on H. If an operator $a \in B(H)$ is invertible, $\rho_a(x) = axa^{-1}$ for $x \in B(H)$ is clearly an automorphism of B(H). When A is a C*-algebra acting on H, an automorphism ρ of A is said to be spatial if there is an invertible operator $a \in B(H)$ such that $\rho = \rho_a | A$, the restriction of ρ_a on A. A spatial automorphism ρ of A is said to be inner if the above a can be chosen in Aand to be outer if it is not inner. An automorphism ρ of A is said to be weakly inner (π -inner in [8]) if for any faithful *-representation π of A there