# UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, II 

KÔJI UCHIDA

(Received December 25,1969)

We have studied equations of type $X^{n}-a X+b=0$, and have obtained some results on unramified extensions of quadratic number fields [3]. In this paper we have further results which inslude almost all of [3]. We do not refer to [3] in the following, though the tec'niques of proofs are almost equal to those of [3]. Theorems proved here are the following." Notice that "unramified" means in this paper that every finite prime is unramified.

THEOREM 1. Let $k$ be an algebraic number field of finite degree. Let $a$ and $b$ be integers of $k$. $K$ denotes the minimal splitting field of $a$ polynomial

$$
f(X)=X^{n}-a X+b
$$

i.e., $K=k\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ where $\alpha_{1}, \cdots, \alpha_{n}$ are the roots of $f(X)=0$. Let $D=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ be the discriminant of $f(X)$. If $(n-1) a$ and $n b$ are relatively prime, $K$ is unramified over $k(\sqrt{D})$.

ThEOREM 2. Let $n \geqq 3$ be an integer, and $A_{n}$ be an alternating group of degree $n$. Then there exist infinitely many quadratic number fields which have unramified Galois extensions with Galois groups $A_{n}$.

1. Proof of Theorem 1. Let $\mathfrak{B}$ be any finite prime of $K$, and let $\mathfrak{p}=\mathfrak{B} \cap k$. Let $G$ be the Galois group of $K$ over $k$. Then $G$ is a permutation group of ( $\alpha_{1}, \cdots, \alpha_{n}$ ). Let $H$ be the subgroup of $G$ consisting of the even permuta:ions. $H$ corresponds to $k\left(\sqrt{ } D^{-}\right)$. We shall prove Theorem 1 by showing that $H$ meets with the inertia group of $\mathfrak{F}$ trivially. First we consider the factorization of $f(X) \bmod \mathfrak{p}$. From $f(X)=X^{n}-a X+b$ and $f^{\prime}(X)=n X^{n-1}-a$, it follows

$$
X f^{\prime}(X)-n f(X)=(n-1) a X-n b .
$$

[^0]
[^0]:    1) After I prepared the manuscript of this paper, I knew that Y. Yamamoto had already obtained the same results which is to appear in Osaka Math. J. before long.
