Tôhoku Math. Journ. 22(1970), 174-180.

SOME REMARKS ON LOCAL MARTINGALES

NORIHIKO KAZAMAKI

(Received April 9, 1969)

Let (Ω, F, P) be a basic probability space where F is complete with respect to P and let $\{F(t)\}_{0 \le l < \infty}$ be an increasing family of Borel subfields of F. In what follows, we suppose that the family $\{F(t)\}_{0 \le l < \infty}$ is right continuous and has no time of discontinuity.

We call a family $T = \{F(t), \tau_t\}_{0 \le l < \infty}$ a time change function with respect to the family $\{F(t)\}_{0 \le l < \infty}$, if

- (1) for each $u \in [0, \infty)$, τ_u is a stopping time with respect to the family $\{F(t)\}_{0 \le t < \infty}$ and $\tau_u < \infty$,
- (2) for almost all ω , $[0, \infty) \ni u \to \tau_u(\omega)$ is a continuous and strictly increasing function with $\tau_0(\omega) = 0$.

For a right continuous stochastic process $X = \{x_t, F(t)\}_{0 \le t < \infty}$ and a time change function $T = \{F(t), \tau_t\}_{0 \le t < \infty}$, we can define a new stochastic process $TX = \{x_{\tau_t}, F(\tau_t)\}_{0 \le t < \infty}$ and we call it the stochastic process obtained from X by a time change with respect to T. In particular, if $X^a = \{x_t^a, F(t)\}_{0 \le t < \infty}$, $a \in A$, where A is an arbitrary set, is a collection of continuous stochastic processes such that

$$\sup\{|x_s^a - x_0^a|; 0 \le s \le t, a \in A\}$$

is continuous, then we call the time change function

$$\Theta = \{F(t), \theta_t\}_{0 \le t < \infty},$$

the stopping process or the brake of the processes X^a , where $\theta_t = \inf\{u; \lambda_u > t\}$ and $\lambda_t = t + \sup\{|x_s^a - x_0^a|; 0 \le s \le t, a \in A\}$.

In the followings we assume that $x_0 = 0$ and X is quasi-continuous from the left. We call a martingale $X = \{x_t, F(t)\}_{0 \le t < \infty}$ an L^*_{∞} -martingale if for each t

$$P\{\sup_{0\leq u\leq t}|x_u|\leq c_t\}=1$$

where c_t is some constant with $c_0 = c_{0+} = 0$. Let *M* designate the set of all right continuous local martingales which can be transformed into L_{∞}^* -martingales