Tôhoku Math. Journ. 23(1971), 413-431.

THE EQUATION $\Delta u = Pu$ ON E^m WITH ALMOST ROTATION FREE $P \ge 0$

MITSURU NAKAI

(Rec. Nov. 17, 1970; Rev. Dec. 14, 1970)

Consider a connected C^{∞} Riemannian *m*-manifold R $(m \ge 2)$ and a continuously differentiable function P (≥ 0 and $\equiv 0$) on R. The space of solutions of d*du = Pu*1or $\Delta u = Pu$ on R will be denoted by P(R). Let \mathcal{O}_{Px} be the set of pairs (R, P) such that the subspace PX(R) of P(R) consisting of functions with a certain property X reduces to $\{0\}$. Here we let X be B which stands for boundedness, D for the finiteness of the Dirichlet integral $D_R(u) = \int_R du \wedge *du$, and E for the finiteness of the energy integral $E_R^P(u) = D_R(u) + \int_R Pu^2*1$; we also consider nontrivial combinations of these properties. We denote by $\mathcal{O}_{\mathcal{G}}$ the set of pairs (R, P) such that there exists no harmonic Green's function on R.

The purpose of this paper is to show that (E^m, P) will be an example for the strictness of each of the following inclusion relations

$$(1) \qquad \qquad \mathcal{O}_{G} \subset \mathcal{O}_{PB} \subset \mathcal{O}_{PD} \subset \mathcal{O}_{PE}$$

if P is properly chosen, where $E^m (m \ge 3)$ is m-dimensional Euclidean space and P is a continuously differentiable function on $E^m (\ge 0, \pm 0)$.

More precisely let

$$(2) P(x) \sim |x|^{-\alpha}$$

as $|x| \to \infty$, i.e. there exists a constant c > 1 such that $c^{-1}|x|^{-\alpha} \leq P(x) \leq c|x|^{-\alpha}$ for large |x|. Then the following is true:

(3)
$$\begin{cases} (E^{m}, P) \in \mathcal{O}_{PB} - \mathcal{O}_{G} \text{ if } \alpha \leq 2; \\ (E^{m}, P) \in \mathcal{O}_{PD} - \mathcal{O}_{PB} \text{ if } 2 < \alpha \leq (m+2)/2; \\ (E^{m}, P) \in \mathcal{O}_{PE} - \mathcal{O}_{PD} \text{ if } (m+2)/2 < \alpha \leq m. \end{cases}$$

^{*} Supported by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G20, UCLA.