Tôhoku Math. Journ. 23(1971), 371-402.

MINIMAL SUBMANIFOLDS WITH *M*-INDEX 2 IN RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

TOMINOSUKE OTSUKI

(Received October 8, 1970)

For a submanifold M in a Riemannian manifold \overline{M} , the minimal index (M-index) at a point of M is defined by the dimension of the linear space of all 2nd fundamental forms with vanishing trace. The geodesic codimension of M in \overline{M} is defined by the minimum of codimensions of M in totally geodesic submanifolds of \overline{M} containing M.

It is clear in general that for M in \overline{M}

M-index \leq geodesic codimension.

In [7], the author investigated minimal submanifolds with *M*-index 2 in Riemannian manifolds of constant curvature and gave some typical examples of such submanifolds with geodesic codimension 3 in the space forms which is quite analogous to the case of helicoids in E^3 when \overline{M} is Euclidean. In the present paper, he will give some examples of such submanifolds with geodesic codimension 4 in the space forms. In the previous case, the base surface (analogous to the helix for a helicoid) must be locally flat, but in the present case it must be of positive constant curvature.

We will use the notations in [7].

1. Preliminaries. Let $\overline{M} = \overline{M}^{n+\nu}$ be a Riemannian manifold of dimension $n+\nu$ and of constant curvature \overline{c} and $M = M^n$ be an *n*-dimensional submanifold in \overline{M} . Let $\overline{\omega}_A$, $\overline{\omega}_{AB} = -\overline{\omega}_{BA}$, $A, B = 1, 2, \dots, n+\nu$, be the basic and connection forms of \overline{M} on the orthonormal frame bundle $F(\overline{M})$ which satisfy the structure equations

$$(1.1) d\overline{\omega}_{A} = \sum_{B} \overline{\omega}_{AB} \wedge_{B} \overline{\omega}, \ d\overline{\omega}_{AB} = \sum_{C} \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c} \overline{\omega}_{A} \wedge \overline{\omega}_{B}.$$

Let B be the subbundle of $F(\overline{M})$ over M such that $b = (x, e_1, \dots, e_n, \dots, e_{n+\nu}) \in F(\overline{M})$ and $(x, e_1, \dots, e_n) \in F(M)$, where F(M) is the orthonormal frame bundle of M with the induced Riemannian metric from \overline{M} , then deleting the bars of $\overline{\omega}_A$, $\overline{\omega}_{AB}$ on B, we have

(1.2)
$$\omega_{\alpha}=0, \ \omega_{i\alpha}=\sum_{j}A_{\alpha ij}\omega_{j}, \ A_{\alpha ij}=A_{\alpha ji} \quad \alpha=n+1,\dots,n+\nu; \ i,j=1,2,\dots,n.$$