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AN EXAMPLE OF RIEMANNIAN MANIFOLDS SATISFYING
R(X, Y)-R = 0 BUT NOT Vi2 = 0

HITOSHI TAKAGI

(Received Nov. 20, 1971)

If a Riemannian manifold M is locally symmetric, then its curvature
tensor R satisfies

(*) R(X, Y)-R = 0 for all tangent vectors X and Γ,

where the endomorphism R(X, Y) operates on R as a derivation of the
tensor algebra at each point of M. Conversely, does this algebraic condi-
tion (*) on the curvature tensor field R imply that M is locally symmetric
(i.e. VR = 0)? For this problem, K. Nomizu conjectured that the answer is
affirmative in the case where M is irreducible and complete and dim M ̂  3.

In the present paper, we shall show that, in a 4-dimensional Euclidean
space E\ there exists an irreducible and complete hypersurface M which
satisfies the condition (*) but is not locally symmetric.
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1. Reduction of condition (*). Let M be a 3-dimensional Riemannian
manifold which is isometrically immersed in a Euclidean space E4. Let
U be a neighborhood of a point poe M on which we can choose a unit
vector field N normal to M. For any vector fields X and Y tangent to
M, we have the formulas of Gauss and Weingarten:

(1.1) DXY = VXY+H{X, Y)N ,

DXN = -AX,

where Dx and Vx denote covariant differentiations for the Euclidean con-
nection of E4 and the Riemannian connection on Λf, respectively. A is a
field of symmetric endomorphisms which corresponds to the second funda-
mental form H, that is, H(X, Y) = g(AX, Y) for tangent vectors X and
Y, g being the Riemannian metric induced from E\ The equation of Gauss
expresses the curvature tensor R of M by means of A:

R(X, Y)Z - g(Z, AY)AX - g(Z, AX)AY .

The type number t(p) at p e M is, by definition, the rank of A at p.
At a point peM, let {elf e2, e3} be an orthonormal basis of the tangent


