ON THE GENERATION OF SEMI-GROUPS OF LINEAR OPERATORS

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

ISAO MIYADERA

(Received Nov. 17, 1971)

1. Introduction. This paper is concerned with the generation of semi-groups of classes (0, A) and (1, A).

Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. A one-parameter family $\{T(t); t \ge 0\}$ is called a *semi-group* (of operators), if it satisfies the following conditions:

(1.1)
$$T(t) \in B(X) \text{ for } t \geq 0$$
.

(1.2)
$$T(0) = I \text{ (the identity)}, T(t+s) = T(t)T(s) \text{ for } t, s \ge 0.$$

(1.3)
$$\lim_{h\to 0} T(t+h)x = T(t)x \text{ for } t > 0 \text{ and } x \in X.$$

Let $\{T(t); t \ge 0\}$ be a semi-group. By the *infinitesimal generator* A_0 of $\{T(t); t \ge 0\}$ we mean

(1.4)
$$A_0 x = \lim_{h \to 0+} (T(h)x - x)/h$$

whenever the limit exists. If A_0 is closable, then $A = \overline{A}_0$ (the closure of A_0) is called the *complete infinitesimal generator* of $\{T(t); t \ge 0\}$.

The following basic classes of semi-groups are well known (see [2]). If a semi-group $\{T(t); t \ge 0\}$ satisfies the condition $(C_0) \lim_{t\to 0+} T(t)x = x$ for $x \in X$, then $\{T(t); t \ge 0\}$ is said to be of class (C_0) . In this case A_0 is closed and hence the complete infinitesimal generator coincides with the infinitesimal generator. If a semi-group $\{T(t); t \ge 0\}$ satisfies the condition

$$(1, A) \qquad \int_0^1 || T(t) || dt < \infty \text{ and } \lim_{\lambda \to \infty} \lambda \int_0^\infty e^{-\lambda t} T(t) x \, dt = x \text{ for } x \in X \text{,}$$

then $\{T(t); t \ge 0\}$ is said to be of *class* (1, A). If, instead of the condition (1, A), T(t) satisfies the weaker condition

$$(0, A) \qquad \int_0^1 || T(t)x || dt < \infty \text{ and } \lim_{\lambda \to \infty} \lambda \int_0^\infty e^{-\lambda t} T(t)x \, dt = x \text{ for } x \in X,$$

then a semi-group $\{T(t); t \ge 0\}$ is said to be of *class* (0, A). Clearly $(C_0) \subset (1, A) \subset (0, A)$ in the set theoretical sense. It is known that in general the infinitesimal generator of a semi-group of class (1, A) need not