Tôhoku Math. Journ. 24 (1972), 191-199.

TAUBERIAN THEOREMS FOR (\Re, p, α) SUMMABILITY

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

HIROSHI HIROKAWA

(Received Dec. 1, 1971)

1. Introduction. Professor G. Sunouchi has introduced the summability (\Re, α) and (\Re^*, α) in his paper [4]. Later we [3] have introduced, as generalizations of these summability, the summability (\Re, p, α) defined as follows. Throughout this paper, p denotes a positive integer and α denotes a real number, not necessarily an integer, such that $0 < \alpha < p$. Let us put

$$C_{p,lpha}=\int_{0}^{\infty}rac{\sin^{p}x}{x^{lpha+1}}\,dx$$
 ,

(1.1)
$$\varphi(n, t) \equiv \varphi(nt) \equiv (C_{p,\alpha})^{-1} \int_{nt}^{\infty} \frac{\sin^p x}{x^{\alpha+1}} dx = (C_{p,\alpha})^{-1} \int_{t}^{\infty} \frac{\sin^p nu}{n^{\alpha} u^{\alpha+1}} du$$
.

Then a series $\sum_{n=0}^{\infty} a_n$ is said to be summable (\Re, p, α) to s if the series in

$$f(p, \alpha, t) = a_0 + \sum_{n=1}^{\infty} a_n \varphi(nt)$$

converges for t positive and small and $f(p, \alpha, t) \to s$ as $t \to +0$. Under this definition, the summability (\Re, α) and the summability (\Re^*, α) are reduced to the summability $(\Re, 1, \alpha)$ and the summability $(\Re, 2, \alpha)$, respectively. On the other hand, for a series $\sum a_n$, let us write $\sigma_n^\beta = s_n^\beta/A_n^\beta$, where s_n^β and A_n^β are defined by the relations

(1.2)
$$(1-x)^{-\beta-1} = \sum_{n=0}^{\infty} A_n^{\beta} x^n$$
 and $(1-x)^{-\beta-1} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} s_n^{\beta} x^n$.

Then, if $\sigma_n^{\beta} \to s$ as $n \to \infty$, we say that the series $\sum_{n=0}^{\infty} a_n$ is summable $(C, \beta), \beta > -1$, to s.

Concerning (\Re, p, α) summability, we [3] have proved the following theorems.

THEOREM A. Let $0 < \beta < \alpha < p$. Then, if a series $\sum_{n=0}^{\infty} a_n$ is summable (C, β) to s, the series $\sum_{n=0}^{\infty} a_n$ is summable (\Re, p, α) to s.

THEOREM B. Let $0 < \alpha < p$, $\lambda_n > 0$ $(n = 1, 2, 3, \cdots)$ and the series $\sum_{n=1}^{\infty} \lambda_n/n$ converge. Then, if