MEAN VALUE THEOREMS FOR VECTOR-VALUED FUNCTIONS

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

T. M. FLETT

(Received May 27, 1971)

1. The object of this paper is to give a generalization to vector-valued functions of the Cauchy mean value theorem of the differential calculus, together with some related results. In the classical Cauchy mean value theorem we have

(1.1)
$$(\phi(b) - \phi(a))\psi'(\xi) = (\psi(b) - \psi(a))\phi'(\xi)$$

for some ξ in]a, b[, where $\phi, \psi: [a, b] \to R$ are continuous functions possessing derivatives on]a, b[. The counterpart to (1.1) when ϕ is vector-valued is the mean value inequality in Theorem 1 below.

Throughout we suppose that our vector spaces are real. For any function ϕ from an interval [a, b] into a topological vector space Y, we say that an element y of Y is a *right-hand derivative value* of ϕ at the point $t \in [a, b]$ if there exists a sequence (t_n) of points of]t, b] decreasing to the limit t such that $(\phi(t_n) - \phi(t))/(t_n - t) \to y$ in Y as $n \to \infty$. (In particular, if $Y = \mathbf{R}$, a right-hand derivative value is finite.)

The use of right-hand derivative values^{*} enables us to avoid the hypothesis that limits in Y are unique. However, if Y is a T_1 -space (and therefore Hausdorff), we can define two-sided and one-sided derivatives in the usual way; for example, the right-hand derivative $\phi'_+(t)$ of ϕ at the point $t \in [a, b]$ is the limit

$$\lim_{h\to 0+}\frac{\phi(t+h)-\phi(t)}{h}$$

whenever this limit exists in Y (again it is finite if $Y = \mathbf{R}$). Obviously $\phi'_{+}(t)$ is a right-hand derivative value of ϕ at t.

A sublinear functional on a vector space Y is a function $p: Y \to \mathbf{R}$ such that for all $y, z \in Y$ and all $\lambda \ge 0$

(1.2)
$$p(y+z) \leq p(y) + p(z) \text{ and } p(\lambda y) = \lambda p(y)$$
.

We note in passing that the first of these relations implies that for all $y, z \in Y$

^{*} The name is used by McLeod [12].